Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI-led butterfly study sheds light on convergent evolution

22.07.2011
Researchers find single gene controls mimicry across different species

For 150 years scientists have been trying to explain convergent evolution. One of the best-known examples of this is how poisonous butterflies from different species evolve to mimic each other's color patterns – in effect joining forces to warn predators, "Don't eat us," while spreading the cost of this lesson.

Now an international team of researchers led by Robert Reed, UC Irvine assistant professor of ecology & evolutionary biology, has solved part of the mystery by identifying a single gene called optix responsible for red wing color patterns in a wide variety of passion vine butterfly species. The result of 10 years of work, the finding is detailed in a paper that appears online today in the journal Science.

"This is our first peek into how mimicry and convergent evolution happen at a genetic level," Reed said. "We discovered that the same gene controls the evolution of red color patterns across remotely related butterflies.

"This is in line with emerging evidence from various animal species that evolution generally is governed by a relatively small number of genes. Out of the tens of thousands in a typical genome, it seems that only a handful tend to drive major evolutionary change over and over again."

The scientists spent several years crossbreeding and raising the delicate butterflies in large netted enclosures in the tropics so they could map the genes controlling color pattern. UCI postdoctoral researcher Riccardo Papa (now an assistant professor at the University of Puerto Rico, Rio Piedras) then perfected a way to analyze the genome map by looking at gene expression in microdissected butterfly wings.

Finding a strong correlation between red color patterns and gene expression in one small region of the genome was the breakthrough that led to discovery of the gene. Population genetics studies in hybrid zones, where different color types of the same species naturally interbreed, confirmed it.

"Biologists have been asking themselves, 'Are there really so few genes that govern evolution?'" Reed said. "This is a beautiful example of how a single gene can control the evolution of complex patterns in nature. Now we want to understand why: What is it about this one gene in particular that makes it so good at driving rapid evolution?"

Papa was co-author on the study. Arnaud Martin, a UCI graduate student in ecology & evolutionary biology, also contributed.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County's largest employer, UCI contributes an annual economic impact of $4.2 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

UCI maintains an online directory of faculty available as experts to the media. To access, visit www.today.uci.edu/experts.For UCI breaking news, visit www.zotwire.uci.edu

Cathy Lawhon | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>