Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Santa Barbara scientists discover cinnamon compounds' potential ability to prevent Alzheimer's

24.05.2013
Cinnamon: Can the red-brown spice with the unmistakable fragrance and variety of uses offer an important benefit? The common baking spice might hold the key to delaying the onset of –– or warding off –– the effects of Alzheimer's disease.

That is, according to Roshni George and Donald Graves, scientists at UC Santa Barbara. The results of their study, "Interaction of Cinnamaldehyde and Epicatechin with Tau: Implications of Beneficial Effects in Modulating Alzheimer's Disease Pathogenesis," appears in the online early edition of the Journal of Alzheimer's Disease, and in the upcoming Volume 36, issue 1 print edition.

Alzheimer's disease is the most common form of dementia, a neurodegenerative disease that progressively worsens over time as it kills brain cells. No cure has yet been found, nor has the major cause of Alzheimer's been identified.

However, two compounds found in cinnamon –– cinnamaldehyde and epicatechin –– are showing some promise in the effort to fight the disease. According to George and Graves, the compounds have been shown to prevent the development of the filamentous "tangles" found in the brain cells that characterize Alzheimer's.

Responsible for the assembly of microtubules in a cell, a protein called tau plays a large role in the structure of the neurons, as well as their function.

"The problem with tau in Alzheimer's is that it starts aggregating," said George, a graduate student researcher. When for the protein does not bind properly to the microtubules that form the cell's structure, it has a tendency to clump together, she explained, forming insoluble fibers in the neuron. The older we get the more susceptible we are to these twists and tangles, Alzheimer's patients develop them more often and in larger amounts.

The use of cinnamaldehyde, the compound responsible for the bright, sweet smell of cinnamon, has proven effective in preventing the tau knots. By protecting tau from oxidative stress, the compound, an oil, could inhibit the protein's aggregation. To do this, cinnamaldehyde binds to two residues of an amino acid called cysteine on the tau protein. The cysteine residues are vulnerable to modifications, a factor that contributes to the development of Alzheimer's.

"Take, for example, sunburn, a form of oxidative damage," said Graves, adjunct professor in UCSB's Department of Molecular, Cellular, and Developmental Biology. "If you wore a hat, you could protect your face and head from the oxidation. In a sense this cinnamaldehyde is like a cap." While it can protect the tau protein by binding to its vulnerable cysteine residues, it can also come off, Graves added, which can ensure the proper functioning of the protein.

Oxidative stress is a major factor to consider in the health of cells in general. Through normal cellular processes, free radical-generating substances like peroxides are formed, but antioxidants in the cell work to neutralize them and prevent oxidation. Under some conditions however, the scales are tipped, with increased production of peroxides and free radicals, and decreased amounts of antioxidants, leading to oxidative stress.

Epicatechin, which is also present in other foods, such as blueberries, chocolate, and red wine, has proven to be a powerful antioxidant. Not only does it quench the burn of oxidation, it is actually activated by oxidation so the compound can interact with the cysteines on the tau protein in a way similar to the protective action of cinnamaldehyde.

"Cell membranes that are oxidized also produce reactive derivatives, such as Acrolein, that can damage the cysteines," said George. "Epicatechin also sequesters those byproducts."

Studies indicate that there is a high correlation between Type 2 diabetes and the incidence of Alzheimer's disease. The elevated glucose levels typical of diabetes lead to the overproduction of reactive oxygen species, resulting in oxidative stress, which is a common factor in both diabetes and Alzheimer's disease. Other research has shown cinnamon's beneficial effects in managing blood glucose and other problems associated with diabetes.

"Since tau is vulnerable to oxidative stress, this study then asks whether Alzheimer's disease could benefit from cinnamon, especially looking at the potential of small compounds," said George.

Although this research shows promise, Graves said, they are "still a long way from knowing whether this will work in human beings." The researchers caution against ingesting more than the typical amounts of cinnamon already used in cooking.

If cinnamon and its compounds do live up to their promise, it could be a significant step in the ongoing battle against Alzheimer's. A major risk factor for the disease –– age –– is uncontrollable. In the United States, Alzheimer's presents a particular problem as the population lives longer and the Baby Boom generation turns gray, leading to a steep rise in the prevalance of the disease. It is a phenomenon that threatens to overwhelm the U.S. health care system. According to the Alzheimer's Association, in 2013, Alzheimer's disease will cost the nation $203 billion.

"Wouldn't it be interesting if a small molecule from a spice could help?" commented Graves, "perhaps prevent it, or slow down the progression."

John Lew, associate professor in the Department of Molecular, Cellular & Developmental Biology, also participated in this study, as well as previous research that has demonstrated cinnamon extract's inhibitory effect on tau aggregation.

The Journal of Alzheimer's Disease is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment, and psychology of Alzheimer's disease.

Sonia Fernandez | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>