Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis researchers identify cellular basis for how anti-aging costmetics work

14.08.2012
Pathway describes how alpha hydroxyl acids cause skin exfoliation

A team of investigators from UC Davis and Peking University have discovered a mechanism that may explain how alpha hydroxyl acids (AHAs) -- the key ingredient in cosmetic chemical peels and wrinkle-reducing creams -- work to enhance skin appearance. An understanding of the underlying process may lead to better cosmetic formulations as well as have medical applications.

The findings were published in the Journal of Biological Chemistry in an article entitled "Intracellular proton-mediated activation of TRPV3 channels accounts for exfoliation effect of alpha hydroxyl acids on keratinocytes."

AHAs are a group of weak acids typically derived from natural sources such as sugar cane, sour milk, apples and citrus that are well known in the cosmetics industry for their ability to enhance the appearance and texture of skin. Before this research, little was known about how AHAs actually caused skin to flake off and expose fresh, underlying skin.

The cellular pathway the research team studied focuses on an ion channel -- known as transient receptor potential vanilloid 3 (TRPV3) -- located in the cell membrane of keratinocytes, the predominant cell type in the outer layer of skin. The channel is known from other studies to play an important role in normal skin physiology and temperature sensitivity.

In a series of experiments that involved recording electrical currents across cultured cells exposed to AHAs, the investigators developed a model that describes how glycolic acid (the smallest and most biologically available AHA) enters into keratinocytes and generates free protons, creating acidic conditions within the cell. The low pH strongly activates the TRPV3 ion channel, opening it and allowing calcium ions to flow into the cell. Because more protons also enter through the open TRPV3 channel, the process feeds on itself. The resulting calcium ion overload in the cell leads to its death and skin exfoliation.

"Our experiments are the first to show that the TRPV3 ion channel is likely to be the target of the most effective skin enhancer in the cosmetics industry," said Jie Zheng, professor of physiology and membrane biology at UC Davis and one of the principal investigators of the study. "Although AHAs have been used for years, no one until now understood their likely mechanism of action."

Besides being found in skin cells, TRPV3 also is found in cells in many areas of the nervous system and is sensitive to temperature as well as acidity. The authors speculate that the channel may have a variety of important physiological functions, including pain control.

Lead author Xu Cao, who conducted the study with UC Davis scientists as a visiting student from Peking University Health Science Center, focuses on TRPV3 channel research. With a team of researchers in China, he recently contributed to the discovery that a mutation in TRPV3 leads to Olmsted syndrome, a rare congenital disorder characterized by severe itching and horny skin development over the palms of the hands and soles of the feet. While in the UC Davis Department of Physiology and Membrane Biology, Cao discovered that AHAs also utilize the TRPV3 channel.

"Calcium channels are becoming increasingly recognized as having vital functions in skin physiology," said Cao. "TRPV3 has the potential to become an important target not only for the cosmetics industry but for analgesia and treating skin disease."

The other study author and co-principal investigator is KeWei Wang of Peking University School of Pharmaceutical Sciences, where the research was conducted.

The research was funded with grants to KeWei Wang from the National Science Foundation of China and the Ministry of Education in China, the China Scholarship Council, and to Zheng from the National Institutes of Health.

UC Davis Health System is improving lives and transforming health care by providing excellent patient care, conducting groundbreaking research, fostering innovative, interprofessional education, and creating dynamic, productive partnerships with the community. The academic health system includes one of the country's best medical schools, a 619-bed acute-care teaching hospital, a 1000-member physician's practice group and the new Betty Irene Moore School of Nursing. It is home to a National Cancer Institute-designated comprehensive cancer center, an international neurodevelopmental institute, a stem cell institute and a comprehensive children's hospital. Other nationally prominent centers focus on advancing telemedicine, improving vascular care, eliminating health disparities and translating research findings into new treatments for patients. Together, they make UC Davis a hub of innovation that is transforming health for all. For more information, visit healthsystem.ucdavis.edu.

Carole Gan | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>