Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis researchers identify cellular basis for how anti-aging costmetics work

14.08.2012
Pathway describes how alpha hydroxyl acids cause skin exfoliation

A team of investigators from UC Davis and Peking University have discovered a mechanism that may explain how alpha hydroxyl acids (AHAs) -- the key ingredient in cosmetic chemical peels and wrinkle-reducing creams -- work to enhance skin appearance. An understanding of the underlying process may lead to better cosmetic formulations as well as have medical applications.

The findings were published in the Journal of Biological Chemistry in an article entitled "Intracellular proton-mediated activation of TRPV3 channels accounts for exfoliation effect of alpha hydroxyl acids on keratinocytes."

AHAs are a group of weak acids typically derived from natural sources such as sugar cane, sour milk, apples and citrus that are well known in the cosmetics industry for their ability to enhance the appearance and texture of skin. Before this research, little was known about how AHAs actually caused skin to flake off and expose fresh, underlying skin.

The cellular pathway the research team studied focuses on an ion channel -- known as transient receptor potential vanilloid 3 (TRPV3) -- located in the cell membrane of keratinocytes, the predominant cell type in the outer layer of skin. The channel is known from other studies to play an important role in normal skin physiology and temperature sensitivity.

In a series of experiments that involved recording electrical currents across cultured cells exposed to AHAs, the investigators developed a model that describes how glycolic acid (the smallest and most biologically available AHA) enters into keratinocytes and generates free protons, creating acidic conditions within the cell. The low pH strongly activates the TRPV3 ion channel, opening it and allowing calcium ions to flow into the cell. Because more protons also enter through the open TRPV3 channel, the process feeds on itself. The resulting calcium ion overload in the cell leads to its death and skin exfoliation.

"Our experiments are the first to show that the TRPV3 ion channel is likely to be the target of the most effective skin enhancer in the cosmetics industry," said Jie Zheng, professor of physiology and membrane biology at UC Davis and one of the principal investigators of the study. "Although AHAs have been used for years, no one until now understood their likely mechanism of action."

Besides being found in skin cells, TRPV3 also is found in cells in many areas of the nervous system and is sensitive to temperature as well as acidity. The authors speculate that the channel may have a variety of important physiological functions, including pain control.

Lead author Xu Cao, who conducted the study with UC Davis scientists as a visiting student from Peking University Health Science Center, focuses on TRPV3 channel research. With a team of researchers in China, he recently contributed to the discovery that a mutation in TRPV3 leads to Olmsted syndrome, a rare congenital disorder characterized by severe itching and horny skin development over the palms of the hands and soles of the feet. While in the UC Davis Department of Physiology and Membrane Biology, Cao discovered that AHAs also utilize the TRPV3 channel.

"Calcium channels are becoming increasingly recognized as having vital functions in skin physiology," said Cao. "TRPV3 has the potential to become an important target not only for the cosmetics industry but for analgesia and treating skin disease."

The other study author and co-principal investigator is KeWei Wang of Peking University School of Pharmaceutical Sciences, where the research was conducted.

The research was funded with grants to KeWei Wang from the National Science Foundation of China and the Ministry of Education in China, the China Scholarship Council, and to Zheng from the National Institutes of Health.

UC Davis Health System is improving lives and transforming health care by providing excellent patient care, conducting groundbreaking research, fostering innovative, interprofessional education, and creating dynamic, productive partnerships with the community. The academic health system includes one of the country's best medical schools, a 619-bed acute-care teaching hospital, a 1000-member physician's practice group and the new Betty Irene Moore School of Nursing. It is home to a National Cancer Institute-designated comprehensive cancer center, an international neurodevelopmental institute, a stem cell institute and a comprehensive children's hospital. Other nationally prominent centers focus on advancing telemedicine, improving vascular care, eliminating health disparities and translating research findings into new treatments for patients. Together, they make UC Davis a hub of innovation that is transforming health for all. For more information, visit healthsystem.ucdavis.edu.

Carole Gan | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>