Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis researchers discover molecular target for the bacterial infection brucellosis

16.08.2013
UC Davis scientists have uncovered a potential drug target for the development of an effective therapy against the debilitating, chronic form of the bacterial disease brucellosis, which primarily afflicts people in Mediterranean and Middle Eastern countries.

Brucellosis, which affects about 500,000 people worldwide each year, typically is caused by ingestion of unsterilized milk or close contact with body secretions from infected animals. Symptoms include intermittent or irregular fever of variable duration, headache, weakness, profuse sweating, chills, weight loss and generalized aching. It can also cause long-lasting or chronic symptoms such as recurrent fevers, joint pain and fatigue.

In a paper published online this week in the journal Cell Host & Microbe, the researchers reported that they have identified the cells that harbor the B. abortus bacteria during the persistent phase of the brucellosis. The cells, known as alternatively activated macrophages (AAMs), are a recently identified category of immune defense cells.

The researchers also determined that the biological pathway peroxisome proliferator activated receptor ã, abbreviated as PPARã, is responsible for altering the metabolism of AAMs so that they supply B. abortus with the energy in the form of glucose that enables bacteria to survive and replicate and thereby sustain the chronic phase of the infectious disease. Other labs also have shown that PPARã control a cell’s metabolism.

“We found that PPARã induces a metabolic shift in these cells that causes them to generate glucose,” said Renee Tsolis, associate professor of medical microbiology and immunology at UC Davis who led the study.

“Starving the B. abortus bacteria by inhibiting the PPARã pathway may be a new approach to eradicating the chronic, difficult-to-treat form of Brucellosis infection that usually occurs because antibiotic therapy was not used during the acute, or early, phase of the infection,” said Tsolis.

Tsolis and her collaborators were the first to discover PPARã’s role in brucellosis and to determine that AAMs harbor the bacteria during the chronic stage of the disease. The identification of the bacteria’s niche is another important clue for the development of a more effective treatment, she said.

In a series of experiments, Tsolis and collaborators found that the gene encoding PPARã is very active during chronic Brucellosis infection, but not during acute infection, and that the B. abortus bacteria did not survive in AAMs when deprived of glucose.

When the researchers inactivated the protein that normally transports glucose, the bacteria stopped reproducing, and the infection no longer was chronic, she said.

In mice infected with B. abortus, Tsolis and collaborators treated the animals with GW9662, a PPAR inhibitor. The researchers administered the inhibitor before the infection became chronic, or long lasting. The inhibitor significantly reduced the amount of AAMs and B. abortus bacteria in the mice.

“These results suggested that inhibition of PPARreduced the bacteria’s survival by reducing the abundance of AAMs during chronic infection,” said Tsolis.

Conversely, when the researchers treated the B. abortus-infected mice with Rosiglitazone, a drug that boosts PPAR activity, the bacteria increased by two-fold during the acute phase and four-fold during the chronic phase of infection. Rosiglitazone and other drugs that boost PPARare used to treat type 2 diabetes because they lower blood glucose by increasing cellular glucose uptake.

In other experiments, the researchers showed that AAMs, one of two categories of macrophages, are abundant in the spleen during chronic brucellosis but not during the acute, or initial, phase of the infection, which is dominated by classically activated macrophages (CAM), the second category of these immune cells.

In addition to profuse sweating, symptoms of brucellosis infection include joint and muscle pain. Among the complications of chronic infection are arthritis and endocarditis, a serious inflammation of one of the four heart valves. Brucellosis rarely occurs in the U.S., with about 100 to 200 cases reported each year, according to the U.S. Centers for Disease Control and Prevention.

The title of the journal paper is “A PPARã-mediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages.”

Authors also include: Mariana N. Xavier, Maria G. Winter, Alanna M. Spees, Andreas B. den Hartigh, Kim Nguyen, Christelle M. Roux, Vidya L. Atluri, Tobias Kerrinnes, A. Marijke Keestra and Andreas J. Baumler of UC Davis; Denise M. Monack of Stanford University, Palo Alto, CA; and Paul A. Luciw, Richard A. Eigenheer, Renato L. Santos and Teane M.A. Silva of the Universidade Federal de Minas Gerais in Brazil.

UC Davis Health System is improving lives and transforming health care by providing excellent patient care, conducting groundbreaking research, fostering innovative, interprofessional education, and creating dynamic, productive partnerships with the community. The academic health system includes one of the country's best medical schools, a 619-bed acute-care teaching hospital, a 1000-member physician's practice group and the new Betty Irene Moore School of Nursing. It is home to a National Cancer Institute-designated comprehensive cancer center, an international neurodevelopmental institute, a stem cell institute and a comprehensive children's hospital. Other nationally prominent centers focus on advancing telemedicine, improving vascular care, eliminating health disparities and translating research findings into new treatments for patients. Together, they make UC Davis a hub of innovation that is transforming health for all. For more information, visit healthsystem.ucdavis.edu.

Carole Gan | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

Further reports about: PPAR gamma brucellosis chronic infection immune cell rosiglitazone

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>