Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ubiquitous sugar molecule could be key to repairing deep wound without scarring

Findings presented at American Society for Cell Biology's 50th annual meeting in Philadelphia

Blocking fragments of the sugar molecule hyaluronan that triggers inflammation could be the key to robust healing and less scarring in deep wounds, Canadian researchers reported at the American Society for Cell Biology's 50th Annual Meeting in Philadelphia.

In laboratory rats, the small peptide, named 15-1, which blocks fragments of the ubiquitous sugar molecule, hyaluronan, promoted wound healing, minimized scarring and forged stronger new tissue.

These effects did not occur in the untreated animals in the study, according to Cornelia Tölg, Ph.D., of the London (Ontario) Regional Cancer Program.

With collaborators in Canada and the U.S., Tölg identified peptide 15-1 for its ability to cap molecular receptors in epithelial and dermal cells that react to fragments of the hyaluronan molecule by setting off a cellular pathway linked to inflammation.

A single dose of peptide 15-1 reduced wound contraction, collagen deposits, inflammation and growth of unwanted new blood vessels in lab animals. The researchers said that these findings may have clinical implications for human wound healing.

A major component in skin, hyaluronan has been known to play a complicated although unclear role in closing deep wounds and minimizing fibrotic scarring in repaired tissue.

Until the late 1970s, hyaluronan was considered to be little more than the inert "goo" that filled the extracellular matrix, but has since emerged as a biological star in a wide range of biological processes, from embryonic heart development to tumor metastasis to wound repair.

The relationship between hyaluronan levels and tissue regeneration is paradoxical according to Tölg. Hyaluronan levels are extremely high in developing embryos and newborns, which can recover readily from surgery without scarring.

But throughout adult life, levels of intact hyaluronan drop while the proportion of broken hyaluronan molecules increases.

Thus, while the intact hyaluronan molecule promotes strong healing, hyaluronan fragments engage the receptor for hyaluronan-mediated motility (RHAMM), setting off inflammation that can result in fibrotic scarring and weak granulated tissue.

Tölg and colleagues used microscopic beads coated with hyaluronan to pinpoint two small peptides that bound to the shape of the molecule.

One of them, peptide 15-1, showed an affinity for fastening itself to hyaluronan fragments, effectively keeping them from the RHAMM.

For more information:

ASCB contacts:
Cathy Yarbrough
858-243-1814 (cell)
215-418-5306 (Dec. 11-16)
John Fleischman
513-929-4635 (Before Dec. 11)
513-706-0212 (cell)
Cornelia Tölg, Ph.D., or Eva Turley, Ph.D.
London Health Sciences Centre/London Regional Cancer Program
519-685-8600 ext 53677
Tölg will present, "Use of Hyaluronan Binding Peptides for Control of Wound Repair Associated Fibrosis" Sunday, Dec. 12, 2010, 1-2:30 pm, Epithelia, Exhibit Halls A/B/C; Program 619, Board B1002,
C. Tölg, E. Turley, London Regional Program, London, Ontario, CANADA
R. Savani, Southwestern Medical Center, Dallas, TX
D. Bagli, Hospital for Sick Children, Toronto, Ontario, CANADA
F. Winnik, Université de Montreal, Montreal, Quebec, CANADA
M. Cowman, Polytechnic Institute of New York University, New York, NY

John Fleischman | EurekAlert!
Further information:

Further reports about: Cancer Ontario RHAMM biological process blood vessel hyaluronan small peptide wound healing

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>