Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ubiquitous sugar molecule could be key to repairing deep wound without scarring

13.12.2010
Findings presented at American Society for Cell Biology's 50th annual meeting in Philadelphia

Blocking fragments of the sugar molecule hyaluronan that triggers inflammation could be the key to robust healing and less scarring in deep wounds, Canadian researchers reported at the American Society for Cell Biology's 50th Annual Meeting in Philadelphia.

In laboratory rats, the small peptide, named 15-1, which blocks fragments of the ubiquitous sugar molecule, hyaluronan, promoted wound healing, minimized scarring and forged stronger new tissue.

These effects did not occur in the untreated animals in the study, according to Cornelia Tölg, Ph.D., of the London (Ontario) Regional Cancer Program.

With collaborators in Canada and the U.S., Tölg identified peptide 15-1 for its ability to cap molecular receptors in epithelial and dermal cells that react to fragments of the hyaluronan molecule by setting off a cellular pathway linked to inflammation.

A single dose of peptide 15-1 reduced wound contraction, collagen deposits, inflammation and growth of unwanted new blood vessels in lab animals. The researchers said that these findings may have clinical implications for human wound healing.

A major component in skin, hyaluronan has been known to play a complicated although unclear role in closing deep wounds and minimizing fibrotic scarring in repaired tissue.

Until the late 1970s, hyaluronan was considered to be little more than the inert "goo" that filled the extracellular matrix, but has since emerged as a biological star in a wide range of biological processes, from embryonic heart development to tumor metastasis to wound repair.

The relationship between hyaluronan levels and tissue regeneration is paradoxical according to Tölg. Hyaluronan levels are extremely high in developing embryos and newborns, which can recover readily from surgery without scarring.

But throughout adult life, levels of intact hyaluronan drop while the proportion of broken hyaluronan molecules increases.

Thus, while the intact hyaluronan molecule promotes strong healing, hyaluronan fragments engage the receptor for hyaluronan-mediated motility (RHAMM), setting off inflammation that can result in fibrotic scarring and weak granulated tissue.

Tölg and colleagues used microscopic beads coated with hyaluronan to pinpoint two small peptides that bound to the shape of the molecule.

One of them, peptide 15-1, showed an affinity for fastening itself to hyaluronan fragments, effectively keeping them from the RHAMM.

For more information:

ASCB contacts:
Cathy Yarbrough
sciencematter@yahoo.com
858-243-1814 (cell)
215-418-5306 (Dec. 11-16)
John Fleischman
jfleischman@ascb.org
513-929-4635 (Before Dec. 11)
513-706-0212 (cell)
Cornelia Tölg, Ph.D., or Eva Turley, Ph.D.
London Health Sciences Centre/London Regional Cancer Program
CANADA
519-685-8600 ext 53677
Conny.Toelg@lhsc.on.ca
Tölg will present, "Use of Hyaluronan Binding Peptides for Control of Wound Repair Associated Fibrosis" Sunday, Dec. 12, 2010, 1-2:30 pm, Epithelia, Exhibit Halls A/B/C; Program 619, Board B1002,
Co-Authors:
C. Tölg, E. Turley, London Regional Program, London, Ontario, CANADA
R. Savani, Southwestern Medical Center, Dallas, TX
D. Bagli, Hospital for Sick Children, Toronto, Ontario, CANADA
F. Winnik, Université de Montreal, Montreal, Quebec, CANADA
M. Cowman, Polytechnic Institute of New York University, New York, NY

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

Further reports about: Cancer Ontario RHAMM biological process blood vessel hyaluronan small peptide wound healing

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>