Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ubiquitous sugar molecule could be key to repairing deep wound without scarring

13.12.2010
Findings presented at American Society for Cell Biology's 50th annual meeting in Philadelphia

Blocking fragments of the sugar molecule hyaluronan that triggers inflammation could be the key to robust healing and less scarring in deep wounds, Canadian researchers reported at the American Society for Cell Biology's 50th Annual Meeting in Philadelphia.

In laboratory rats, the small peptide, named 15-1, which blocks fragments of the ubiquitous sugar molecule, hyaluronan, promoted wound healing, minimized scarring and forged stronger new tissue.

These effects did not occur in the untreated animals in the study, according to Cornelia Tölg, Ph.D., of the London (Ontario) Regional Cancer Program.

With collaborators in Canada and the U.S., Tölg identified peptide 15-1 for its ability to cap molecular receptors in epithelial and dermal cells that react to fragments of the hyaluronan molecule by setting off a cellular pathway linked to inflammation.

A single dose of peptide 15-1 reduced wound contraction, collagen deposits, inflammation and growth of unwanted new blood vessels in lab animals. The researchers said that these findings may have clinical implications for human wound healing.

A major component in skin, hyaluronan has been known to play a complicated although unclear role in closing deep wounds and minimizing fibrotic scarring in repaired tissue.

Until the late 1970s, hyaluronan was considered to be little more than the inert "goo" that filled the extracellular matrix, but has since emerged as a biological star in a wide range of biological processes, from embryonic heart development to tumor metastasis to wound repair.

The relationship between hyaluronan levels and tissue regeneration is paradoxical according to Tölg. Hyaluronan levels are extremely high in developing embryos and newborns, which can recover readily from surgery without scarring.

But throughout adult life, levels of intact hyaluronan drop while the proportion of broken hyaluronan molecules increases.

Thus, while the intact hyaluronan molecule promotes strong healing, hyaluronan fragments engage the receptor for hyaluronan-mediated motility (RHAMM), setting off inflammation that can result in fibrotic scarring and weak granulated tissue.

Tölg and colleagues used microscopic beads coated with hyaluronan to pinpoint two small peptides that bound to the shape of the molecule.

One of them, peptide 15-1, showed an affinity for fastening itself to hyaluronan fragments, effectively keeping them from the RHAMM.

For more information:

ASCB contacts:
Cathy Yarbrough
sciencematter@yahoo.com
858-243-1814 (cell)
215-418-5306 (Dec. 11-16)
John Fleischman
jfleischman@ascb.org
513-929-4635 (Before Dec. 11)
513-706-0212 (cell)
Cornelia Tölg, Ph.D., or Eva Turley, Ph.D.
London Health Sciences Centre/London Regional Cancer Program
CANADA
519-685-8600 ext 53677
Conny.Toelg@lhsc.on.ca
Tölg will present, "Use of Hyaluronan Binding Peptides for Control of Wound Repair Associated Fibrosis" Sunday, Dec. 12, 2010, 1-2:30 pm, Epithelia, Exhibit Halls A/B/C; Program 619, Board B1002,
Co-Authors:
C. Tölg, E. Turley, London Regional Program, London, Ontario, CANADA
R. Savani, Southwestern Medical Center, Dallas, TX
D. Bagli, Hospital for Sick Children, Toronto, Ontario, CANADA
F. Winnik, Université de Montreal, Montreal, Quebec, CANADA
M. Cowman, Polytechnic Institute of New York University, New York, NY

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

Further reports about: Cancer Ontario RHAMM biological process blood vessel hyaluronan small peptide wound healing

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>