Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC-VCH researchers find critical link between Down syndrome and Alzheimer's disease

13.01.2011
Researchers at the University of British Columbia and Vancouver Coastal Health Research Institute have discovered that the genetic mechanism which destroys brain cells is responsible for early development of Alzheimer's Disease in people with Down Syndrome and for development of Alzheimer's Disease in general population – providing a potential new target for drugs that could forestall dementia in people with either condition.

The research, led by Dr. Weihong Song, Canada Research Chair in Alzheimer's Disease and a professor of psychiatry in the UBC Faculty of Medicine, found that excessive production of a protein, called Regulator of Calcineurin 1 (RCAN1), sets in motion a chain reaction that kills neurons in the hippocampus and cortex in people with Down Syndrome and Alzheimer's Disease. The findings were published online recently in the Journal of Biological Chemistry.

"Neuronal death is the primary reason for the memory loss and other cognitive impairments of Alzheimer's Disease, and it's the main reason people with Down Syndrome develop Alzheimer's Disease long before most people, usually in their 30s," says Song, a member of the Brain Research Centre at UBC and the Vancouver Coastal Health Research Institute (VCHRI), and Director of Townsend Family Laboratories at UBC. "By looking for the common elements of both conditions, we were able to pinpoint how and why the deterioration occurs."

Alzheimer's Disease (AD) is the most common form of dementia, which usually affects people over age 60. The Alzheimer Society of Canada estimates that the disease affects more than 238,000 Canadians, and that by 2031 about 750,000 Canadians will suffer from AD and related dementias.

Down Syndrome (DS) is a congenital anomaly that includes developmental delays and learning disabilities. A 2002 report by the Public Health Agency of Canada said that about one in 800 Canadian newborns have the condition; the average lifespan for those with Down Syndrome is 49 years. People with DS have an extra copy of the gene that produces RCAN1, thus leading to its excess production. The resulting neuronal death – with symptoms that mirror those of AD patients – is one of the prime reasons for the shortened lifespan of people with DS.

The research team discovered that some AD patients have similarly elevated levels of the RCAN1 protein, despite having two copies of the responsible gene. It's still unknown why, though Dr. Song speculates that the gene's overexpression might be triggered by stroke, hypertension or the presence of a neurotoxic protein, called beta amyloid, that typically collects into clumps in the brains of people with AD – what he describes as a "vicious cycle" in which one destructive factor exacerbates another.

But now that the culprit gene and protein have been identified, "we can develop therapies that interfere with the gene's ability to produce that protein, and hopefully short-circuit the destruction of brain cells," Dr. Song says.

The research was supported by the Canadian Institutes of Health Research, the Jack Brown and Family Alzheimer's Research Foundation, the Michael Smith Foundation for Health Research and the National Natural Science Foundation of China.

Townsend Family Laboratories was established at The University of British Columbia with a donation of $7.5 million from the David Townsend Family. The research centre is dedicated to integrating the basic and clinical research for finding the underlying mechanism and novel diagnostic biomarkers for Alzheimer's Disease and developing interventions to prevent and treat this devastating disease.

The UBC Faculty of Medicine provides innovative programs in the health and life sciences, teaching students at the undergraduate, graduate and postgraduate levels, and generates more than $200 million in research funding each year. In 2007/08, out of the total UBC research endeavour, 53 per cent, or $247 million, came from academic and clinical teams in the Faculty of Medicine. For more information, visit www.med.ubc.ca.

The Brain Research Centre comprises more than 200 investigators with multidisciplinary expertise in neuroscience research ranging from the test tube, to the bedside, to industrial spin-offs. The centre is a partnership of UBC and VCH Research Institute. For more information, visit www.brain.ubc.ca.

Vancouver Coastal Health Research Institute (VCHRI) is the research body of Vancouver Coastal Health Authority, which includes BC's largest academic and teaching health sciences centres: VGH, UBC Hospital, and GF Strong Rehabilitation Centre. In academic partnership with the University of British Columbia, VCHRI brings innovation and discovery to patient care, advancing healthier lives in healthy communities across British Columbia, Canada, and beyond. www.vchri.ca

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca
http://www.vchri.ca

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>