Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC researchers create more powerful “lab-on-a-chip” for genetic analysis

27.07.2011
UBC researchers have invented a silicone chip that could make genetic analysis far more sensitive, rapid, and cost-effective by allowing individual cells to fall into place like balls in a pinball machine.

The UBC device – about the size of a nine-volt battery – allows scientists to simultaneously analyze 300 cells individually by routing fluid carrying cells through microscopic tubes and valves. Once isolated into their separate chambers, the cells’ RNA can be extracted and replicated for further analysis.

By enabling such “single-cell analysis,” the device could accelerate genetic research and hasten the use of far more detailed tests for diagnosing cancer.

Single-cell analysis is emerging as the gold standard of genetic research because tissue samples, even those taken from a single tumour, contain a mixture of normal cells and various types of cancer cells – the most important of which may be present in only very small numbers and impossible to distinguish.

So standard genetic tests, which require large numbers of cells, capture only an average “composite picture” of thousands or millions of different cells – obscuring their true nature and the interactions between them.

“It’s like trying to trying to understand what makes a strawberry different from a raspberry by studying a blended fruit smoothie,” says Carl Hansen, an assistant professor in the Dept. of Physics and Astronomy and the Centre for High-Throughput Biology, who led the team that developed the device.

The device, described and validated in this week’s issue of the Proceedings of the National Academy of Sciences, was developed by Hansen’s team, in collaboration with researchers from BC Cancer Agency and the Centre for Translational and Applied Genomics.

The device’s ease of use and cost-effectiveness arise from its integration of almost the entire process of cell analysis – not just separating the cells, but mixing them with chemical reagents to highlight their genetic code and analyzing the results by measuring fluorescent light emitted from the reaction. Now all of that can be done on the chip.

“Single-cell genetic analysis is vital in a host of areas, including stem cell research and advanced cancer biology and diagnostics,” Hansen says. “But until now, it has been too costly to become widespread in research, and especially for use in health care. This technology, and other approaches like it, could radically change the way we do both basic and applied biomedical research, and would make single-cell analysis a more plausible option for treating patients – allowing clinicians to distinguish various cancers from one another and tailor their treatments accordingly.”

The research was funded by Genome BC, Genome Canada, Western Economic Diversification Canada, the Canadian Institutes of Health Research, the Terry Fox Foundation, and the Natural Sciences and Engineering Research Council.

Brian Kladko | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>