Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Researcher and Colleagues Discover the Birthplace of the Chili Pepper

23.04.2014

In the Southwest, the chili pepper is practically a dietary staple. It gives salsa a spicy crunch, it brings depth to Mexican sauces, and provides an extra kick to Sonoran hot dogs

Plenty of other world cuisines rely on it too, from China to India to Thailand. But Latin America, researchers have confirmed, is where it started. 

In a study of global significance, researchers have figured out where the first domesticated chili pepper crop was farmed. University of Arizona ethnobiologist and agroecologist Gary Nabhan and other researchers in the U.S., France and Kenya have determined that the plant was first cultivated in central-east Mexico, likely in the Valley of Tehuacán. 

The team's evidence indicates that the first cultivators of the chili pepper inhabited the area about 6,500 years ago. They were speakers of the Oto-Manguean language stock – an ethnic Mexican Indian language that makes up 174 different dialects.

The team's paper, "Multiple Lines of evidence for the Origin of Q:1 Domesticated Chili Pepper, Capsicum annuum, in Mexico," appears in the April 29 issue of the Proceedings of the National Academy of Sciences.

The article is part of a special series of research papers PNAS just published on different aspects of domestication, including plant and animal domestication.

Led by University of California, Davis, plant scientist Paul Gepts, the international team determined that the crop's region of origin extended from the area that is now southern Puebla and northern Oaxaca to southeastern Veracruz, and was further south than previously thought.

"Identifying the origin of the chili pepper is not just an academic exercise," said Gepts, lead author of another paper PNAS released in the series. "By tracing back the ancestry of any domesticated plant, we can better understand the genetic evolution of that species."

Nabhan, who holds the Kellogg Endowed Chair in Sustainable Food Systems and is a researcher at the UA Southwest Center, noted that this new knowledge "better equips us to develop sound genetic conservation programs." 

For the current study, the team employed a novel and innovative approach, using multiple lines of evidence to pinpoint where humans first cultivated the chili pepper. The team used two traditional investigative approaches, relying on archaeological and genetic data. 

The team's scientific methods and findings have important implications for understanding nutrition-related diseases, the use of crops for health-related benefits and crop production and resiliency into the future.

"Chilies are one of the most important spices in the world, and are an important part of our cultural legacy," Nabhan said.

"We are helping scientists all around the world to understand the ecological, cultural and historical relationships of something that affects anyone that uses chilies."

MEDIA CONTACTS:

Gary Nabhan

UA Southwest Center

520-621-2484

gpnabhan@email.arizona.edu

Paul Gepts

University of California, Davis

Department of Plant Sciences

530-752-7743

plgepts@ucdavis.edu

Gary Nabhan | UA News
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>