Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Geneticists Find Causes for Severe Childhood Epilepsies

07.05.2013
Researchers at the University of Arizona have successfully determined the genetic mutations causing severe epilepsies in seven out of 10 children for whom the cause of the disorder could not be determined clinically or by conventional genetic testing.

Instead of sequencing each gene one at a time, the team used a technique called whole-exome sequencing that deciphers nearly all human genes simultaneously.

"My initial hope was that we would find something in one out of the 10 children in our study. But a 70 percent success rate is beyond anyone's imagination," said study leader Michael Hammer, who is a research scientist in the UA's Arizona Research Labs Division of Biotechnology and a member of the UA BIO5 Institute.

For Hammer, the research hit very close to home. Just last year, his lab tracked down the mutation that had caused the severe – and ultimately fatal – epilepsy in his teenage daughter.

"I figured, if we could do this for one child, we could do it for others." Hammer explained. "These are children who have had every test imaginable and tried every possible drug combination, and nobody has figured out where their seizures come from and how to stop them."

The children who participated in the study, published online in the journal Epilepsia, all suffered from severe seizure disorders, and most of them started having seizures within the first year or two after birth.

Unlike individuals afflicted with epilepsy later in life, many of whom can live normal lives with the right medical oversight and medications, early-onset epilepsy can be devastating. Children often develop other severe complications such as intellectual disability, autism and loss of muscle tone or coordination. Early death is not uncommon.

"Because their seizures are not well controlled, and that firestorm of electrical activity in the brain is bad for brain development, the damage can be extensive," added Linda Restifo, a professor in the UA department of neurology and a BIO5 member who co-authored the study. "The earlier the seizures start and the more severe and frequent they are, the more likely they are to leave the child with permanent developmental disability."

"The sooner we can catch problems in children and understand what is causing them, the better the chance we have to try and correct them," Hammer added.

To identify changes in the DNA that are the most likely cause of the disorders, the team focused on a class of mutations called de novo mutations: "typos" in the DNA sequence that are present only in the child. In order to find such mutations, the study included both parents and their child.

Overall, the team found 15 mutations in nine children, seven of which are known or likely to cause epilepsy. No mutations could be found in one of the children.

"In four of the patients. we found mutations that were already known to be associated with epilepsy," said Krishna Veeramah, a postdoctoral fellow in Hammer's group and the study's first author. "However, three patients had mutations in genes that were not previously associated with epilepsy in humans but presented plausible explanations for the disorder."

"The fact that we found three genes – in a study involving only 10 subjects – that had never been implicated in epilepsy before suggests that many more genetic defects related to developmental brain disorders remain to be discovered," Veeramah said.

One of the participants in the study was Ashley Wilhelm, a 14-year-old girl from Phoenix, Ariz., whose seizures started when she was only 5 months old. Her first seizures appeared to be triggered by fever, leading doctors to believe they were just that – a side effect of the fever.

"But she soon began to have more and more seizures, and they would last half an hour or longer," said her mother, Ann. "We had all sorts of tests done, but the doctors kept saying her brain was normal, and that they didn't see any reason she'd have those seizures."

Ashley, whose development has severely suffered as a consequence of the repeated seizures, was enrolled in the study through her neurologist, Dinesh Talwar, who co-authored the paper.

Even though her treatment is unlikely to change with the new information, the family said the results brought "more relief than we can explain."

"Since insurance wouldn't pay for the testing, and we couldn't afford it on our own, we were very grateful we were able to participate in the study," said Jeff Wilhelm, Ashley's father. "If such a test could be done much earlier, it would ease the pain for everyone involved. What if our son had decided not to consider having children of his own out of concern they might have the disorder?"

"The results from this study have at last given us a breakthrough," said the mother of another participating teenager. "We had pursued every possible avenue to understand what might be responsible for his epilepsy – magnetic resonance imaging, CT scans, searches for gross chromosome abnormalities or markers associated with epilepsy – with no success."

"Although the discovery doesn't yet give us a treatment, it gives us hope for finding one," she said. "As more research is done on this mutation, drugs to control our son's seizures will be identified. If more children with epilepsy can be studied and families with children with similar mutations can organize and share resources, there will be more progress."

Hammer said the approach is applicable to other conditions in which conventional genetic testing has failed to reveal the cause.

"Our work bridges research and clinical practice," he added. "We can sequence all the genes in your genome in a matter of days and report it to the patient's family and the physician. That may make a difference in the treatment and management of the disorder in question."

Centers with the capabilities to do this kind of analysis are few and far between.

"Other centers that do this kind of work will sequence your genome and tell you where and what the mutation is in the DNA sequence, but it's not that simple," Hammer said. "In most cases, we find a mutation in a gene not previously known to cause disease, so we need to perform a follow-up study to find out what that mutation actually does."

To perform these follow-up studies, the UA team has established collaborations with leading scientists at the UA and at other institutions.

"Right now, the benefit to families is primarily to get answers," said Restifo. "The long-term goal is to collect this kind of information from more children, which will hopefully lead to new research into medications that improve brain development and function."

Hammer added: "In the meantime, a molecular diagnosis provides immediate relief to the unnecessary guilt parents might feel for their role in causing their child's suffering. They want answers, not endless doctors visits and tests with negative results, or to have their hopes raised and dashed over and over."

Encouraged by the success of their approach so far, Hammer and his colleagues already have bigger plans.

"We hope to involve other clinical areas such as cardiology, immunology, gastroenterology – anything that we can apply molecular diagnostics or clinical genomics to at the UA, we want to explore. We want to make the University the core for clinical diagnostics using new sequencing technologies for at least the entire Southwest."

UA pediatric geneticist Robert Erickson, another co-author and member of the UA Steele Children's Research Center added, "these efforts will be very important in the diagnosis of newborns with unusual birth defects."

CONTACTS:

Michael Hammer, Arizona Research Labs Division of Biotechnology, mfh@email.arizona.edu, 520-333-9318

Daniel Stolte, UA University Communications: 520-626-4402; stolte@email.arizona.edu

Links:
Research paper: http://onlinelibrary.wiley.com/doi/10.1111/epi.12201/abstract

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

Further reports about: Arizona BIO5 Biotechnology CT scan Childhood DNA DNA sequence Epilepsies birth defect specimen processing

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>