Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T scientists identify gene that has enabled water striders to glide across water

18.08.2009
Water striders, the familiar semi-aquatic bugs gliding across the lake at the cottage, have a novel body form that allows them to walk on water.

This was not always the case. Achieving the gliding ability required the evolution of a unique arrangement of the legs, with the mid-legs greatl y elongated. Scientists at the University of Toronto’s Department of Ecology and Evolutionary Biology have discovered the gene behind this evolutionary change.

Called the Hox gene, Ultrabithorax, is known to play a role in lengthening legs in other insects. Professor Locke Rowe and his team investigated where Ultrabithorax is expressed and how it functions in the water strider body plan using the cutting edge tools of molecular biology. “To our surprise, we discovered that Ultrabithorax performs opposite functions in different limbs,” says Rowe. “It lengthens the mid-legs but shortens the hind-legs to establish this unusual body plan that allows water striders to glide on the water surface.”

Groups of organisms are characterized by a few defining characteristics. In the case of humans it is walking upright and in the case of spiders it is eight legs. It is these defining characteristics that account for much of the diversity we see in life. Determining how these major evolutionary changes happen is a central goal of evolutionary biology, explains Rowe. “Many have marveled at the ability of water striders to walk on water, and we are excited to have discovered the gene that has affected this evolutionary change.”

Other research team members include Ehab Abouheif and lead author Abderrahman Khila, both of McGill University. The work was funded by an NSERC Steacie Fellowship and by NSERC Discovery Grants and is published in PLoS Genetics.

Kim Luke | University of Toronto
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>