Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T Researchers uncover major source of evolutionary differences among species

21.12.2012
University of Toronto Faculty of Medicine researchers have uncovered a genetic basis for fundamental differences between humans and other vertebrates that could also help explain why humans are susceptible to diseases not found in other species.

Scientists have wondered why vertebrate species, which look and behave very differently from one another, nevertheless share very similar repertoires of genes. For example, despite obvious physical differences, humans and chimpanzees share a nearly identical set of genes.

The team sequenced and compared the composition of hundreds of thousands of genetic messages in equivalent organs, such as brain, heart and liver, from 10 different vertebrate species, ranging from human to frog. They found that alternative splicing — a process by which a single gene can give rise to multiple proteins — has dramatically changed the structure and complexity of genetic messages during vertebrate evolution.

The results suggest that differences in the ways genetic messages are spliced have played a major role in the evolution of fundamental characteristics of species. However, the same process that makes species look different from one another could also account for differences in their disease susceptibility.

"The same genetic mechanisms responsible for a species' identity could help scientists understand why humans are prone to certain diseases such as Alzheimer's and particular types of cancer that are not found in other species," says Nuno Barbosa-Morais, the study's lead author and a computational biologist in U of T Faculty of Medicine's Donnelly Centre for Cellular and Biomolecular Research. "Our research may lead to the design of improved approaches to study and treat human diseases."

One of the team's major findings is that the alternative splicing process is more complex in humans and other primates compared to species such as mouse, chicken and frog.

"Our observations provide new insight into the genetic basis of complexity of organs such as the human brain," says Benjamin Blencowe, Professor in U of T's Banting and Best Department of Research and the Department of Molecular Genetics, and the study's senior author.

"The fact that alternative splicing is very different even between closely related vertebrate species could ultimately help explain how we are unique."

The study, "The Evolutionary Landscape of Alternative Slicing in Vertebrate Species", is published in the December 21 issue of Science.

Nicole Bodnar | EurekAlert!
Further information:
http://www.utoronto.ca

Further reports about: genetic mechanism human diseases physical differences

More articles from Life Sciences:

nachricht More detailed analysis of how cells react to stress
08.02.2016 | Universität Zürich

nachricht A new potential biomarker for cancer imaging
05.02.2016 | Universiti Putra Malaysia (UPM)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

Ocean acidification makes coralline algae less robust

08.02.2016 | Earth Sciences

Online shopping might not be as green as we thought

08.02.2016 | Studies and Analyses

Proteomics and precision medicine

08.02.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>