Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T Researchers uncover major source of evolutionary differences among species

21.12.2012
University of Toronto Faculty of Medicine researchers have uncovered a genetic basis for fundamental differences between humans and other vertebrates that could also help explain why humans are susceptible to diseases not found in other species.

Scientists have wondered why vertebrate species, which look and behave very differently from one another, nevertheless share very similar repertoires of genes. For example, despite obvious physical differences, humans and chimpanzees share a nearly identical set of genes.

The team sequenced and compared the composition of hundreds of thousands of genetic messages in equivalent organs, such as brain, heart and liver, from 10 different vertebrate species, ranging from human to frog. They found that alternative splicing — a process by which a single gene can give rise to multiple proteins — has dramatically changed the structure and complexity of genetic messages during vertebrate evolution.

The results suggest that differences in the ways genetic messages are spliced have played a major role in the evolution of fundamental characteristics of species. However, the same process that makes species look different from one another could also account for differences in their disease susceptibility.

"The same genetic mechanisms responsible for a species' identity could help scientists understand why humans are prone to certain diseases such as Alzheimer's and particular types of cancer that are not found in other species," says Nuno Barbosa-Morais, the study's lead author and a computational biologist in U of T Faculty of Medicine's Donnelly Centre for Cellular and Biomolecular Research. "Our research may lead to the design of improved approaches to study and treat human diseases."

One of the team's major findings is that the alternative splicing process is more complex in humans and other primates compared to species such as mouse, chicken and frog.

"Our observations provide new insight into the genetic basis of complexity of organs such as the human brain," says Benjamin Blencowe, Professor in U of T's Banting and Best Department of Research and the Department of Molecular Genetics, and the study's senior author.

"The fact that alternative splicing is very different even between closely related vertebrate species could ultimately help explain how we are unique."

The study, "The Evolutionary Landscape of Alternative Slicing in Vertebrate Species", is published in the December 21 issue of Science.

Nicole Bodnar | EurekAlert!
Further information:
http://www.utoronto.ca

Further reports about: genetic mechanism human diseases physical differences

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>