Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of Minnesota researcher helps develop new technique for modifying plant genes

30.04.2009
New tool could help provide sustainable food, fuel and fiber

Researchers at the University of Minnesota and Massachusetts General Hospital have used a genome engineering tool they developed to make a model crop plant herbicide-resistant without significant changes to its DNA.

"It's still a GMO [Genetically Modified Organism] but the modification was subtle," said Daniel Voytas, lead author and director of the U of M Center for Genome Engineering. "We made a slight change in the sequence of the plant's own DNA rather than adding foreign DNA."

The new approach has the potential to help scientists modify plants to produce food, fuel and fiber sustainably while minimizing concerns about genetically modified organisms

For the study, the researchers created a customized enzyme called a zinc finger nuclease (ZFN) to change single genes in tobacco plant cells. The altered cells were then cultured to produce mature plants that survived exposure to herbicides.

The research will be published online by Nature on April 29.

"This is the first real advance in technology to genetically modify plants since foreign DNA was introduced into plant chromosomes in the early 1980s," Voytas said. "It could become a revolutionary tool for manipulating plant, animal and human genomes."

Zinc finger nucleases (ZFNs) are engineered enzymes that bind to specific DNA sequences and introduce modifications at or near the binding site. The standard way to genetically modify an organism is to introduce foreign genes into a genome without knowing where they will be incorporated. The random nature of the standard method has given rise to concerns about potential health and environmental hazards of genetically modified organisms.

Voytas is a co-founder of the Zinc Finger Consortium http://www.zincfingers.org), which developed a do-it-yourself strategy for academic researchers. The consortium is led by co-author J. Keith Joung, a pathologist at Massachusetts General Hospital and an associate professor at Harvard University. The consortium published its method (called Oligomerized Pool Engineering, or OPEN) in the July 2008 issue of Molecular Cell. Nature published a perspective feature on OPEN and a commercial strategy in September 2008.

Voytas' lab used ZFNs created by the OPEN method to modify the tobacco cells to make them herbicide resistant. According to Voytas, OPEN ZFNs can be used to improve the nutrition of crop plants, make plants more amenable to conversion into biofuels, and help plants adapt to climate change.

"The world is going to turn increasingly to plants to solve lots of problems. Now we have a new set of tools to help." Voytas said.

Voytas' next steps will be to apply the technology to Arabidopsis thaliana, a model plant, and rice, the world's most important food crop. He is also adapting algae for biofuel production.

"The technology is ready for prime time," Voytas said. "There is no scientific reason it can't be applied to crop plants now to improve agricultural output and practices."

Voytas is a professor in the department of genetics, cell biology and development, which is a joint department of the College of Biological Sciences and the Medical School.

Patty Mattern | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>