Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M study finds titan cells protect Cryptococcus

29.05.2012
Giant cells called "titan cells" protect the fungus Cryptococcus neoformans during infection, according to two University of Minnesota researchers.

Kirsten Nielsen, Ph.D., an assistant professor in the department of microbiology, and recent Ph.D. recipient Laura Okagaki believe their discovery could help develop new ways to fight infections caused by Cryptococcus.

The findings will be published in the June issue of the journal Eukaryotic Cell. The study was funded by the National Institutes of Health and the University of Minnesota's Medical School.

Cryptococcus, a fungus frequently found in dust and dirt, is responsible for the deaths of more than 650,000 AIDS patients worldwide each year. It is also a potentially deadly concern among chemotherapy and organ transplant patients. Currently, Cryptococcus causes more annual deaths in sub-Saharan Africa than tuberculosis.

"While most healthy individuals are resistant to Cryptococcus infections, the fungus can cause deadly disease for those with already weak immune systems," said Dr. Nielsen.

When inhaled, Cryptococcus can cause an infection in the lungs. This infection can spread to the brain and result in meningitis, an often-deadly inflammation of the brain and spine.

Nielsen and Okagaki found that titan cells, or Cryptococcus cells ten to twenty times the size of a normal cell, are too large to be destroyed by the body's immune system.

Researchers also found the presence of titan cells can protect all Cryptococcus cells in the area, even the normal sized Cryptococcus cells.

"This tells us that titan cell formation is an important aspect of the interaction between the human/host and the organism that allows Cryptococcus to cause disease," said Nielsen. "This information will help us find new ways to treat Cryptococcus infections that are very difficult to treat with currently available drugs."

About the funding for this research

Funding for this study was provided by the National Institutes for Health grant no. AI080275 and the University of Minnesota's Medical School.
About the University of Minnesota Medical School

The University of Minnesota Medical School, with its two campuses in the Twin Cities and Duluth, is a leading educator of the next generation of physicians. Our graduates and the school's 3,800 faculty physicians and scientists advance patient care, discover biomedical research breakthroughs with more than $180 million in sponsored research annually, and enhance health through world-class patient care for the state of Minnesota and beyond. Visit www.med.umn.edu to learn more.

Miranda Taylor | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>