Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers identify key proteins influencing major immune strategies

29.10.2013
Findings could help define new vaccination applications

New research from the Masonic Cancer Center, University of Minnesota, and the University of Minnesota Center for Immunology has identified key proteins that influence immune response strategies, a finding that could influence new vaccination approaches.

The study, published in the latest edition of Nature Immunology, looked closely at the KLF2 and S1P1 genes, and how their expression impacted the immune strategy of a cell.

The immune system has two main strategies to empower white blood cells, or lymphocytes, to resist infections of the body.

The first strategy, called recirculation, is a process where white blood cells are carried around in circulating blood, allowing rapid access to organs once an immune response has begun.

The second major strategy allows lymphocytes to migrate into tissues and remain there long-term, creating a kind of rapid response team to any infectious organism that enters the body. These cells are called resident memory T-cells or Trm, and they play a dominant role in initiating immune responses that control infections.

"A key question we had was how lymphocytes make the choice to be a recirculator or a resident," said Stephen Jameson, Ph.D., a professor in the Center for Immunology and Department of Laboratory Medicine and Pathology in the University of Minnesota Medical School. "We already knew the protein KLF2 regulates the expression of genes. One of those genes, called S1P1, allows lymphocytes to leave tissues and begin recirculating."

Intrigued by the impact of KLF2 and S1P1 on lymphocytes' ability to move out of tissues, Jameson and colleagues wanted to compare resident and recirculating cells and the KLF2 and S1P1 levels. They found that resident T-cells had lost expression of the KLF2 and S1P1 genes.

The next step was finding what controlled the expression of KLF1 and S1P1. Jameson's team was able to pinpoint cytokines as playing a major role in this cell decision-making process.

"Cytokines are soluble proteins that act similar to hormones for the immune system," said Jameson. "We found the cytokines can instruct cells to become resident memory cells, thereby may be useful for bolstering local immunity."

Though further research is needed to define the biochemical signals dictating how recirculation versus residency is chosen, learning more about these key signals instructing T-cells to determine their strategic immunity role could significantly improve vaccination approaches. Researchers may be able to use the knowledge and develop technology to focus memory T-cells to form a barrier to infections.

This project was supported by funding from an NIH MERIT award to Jameson (R37 AI38903) and an NIH training grant for Cara Skon (T32 AI07313), as well as other NIH grants to contributing authors (R37 AI39560 and T90 DE022732).

The Center for Immunology is a interdisciplinary unit at the University of Minnesota devoted to advancing the field of Immunology and educating future Immunologists. Learn more at http://www.immunology.umn.edu.

Masonic Cancer Center, University of Minnesota is part of the University's Academic Health Center. It is designated by the National Cancer Institute as a Comprehensive Cancer Center. For more information about the Masonic Cancer Center, visit http://www.cancer.umn.edu or call 612-624-2620. The University of Minnesota Medical School, with its two campuses in the Twin Cities and Duluth, is a leading educator of the next generation of physicians. Our graduates and the school's 3,800 faculty physicians and scientists advance patient care, discover biomedical research breakthroughs with more than $180 million in sponsored research annually, and enhance health through world-class patient care for the state of Minnesota and beyond. Visit http://www.med.umn.edu to learn more.

Caroline Marin | EurekAlert!
Further information:
http://www.umn.edu
http://www.med.umn.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>