Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers identify key proteins influencing major immune strategies

29.10.2013
Findings could help define new vaccination applications

New research from the Masonic Cancer Center, University of Minnesota, and the University of Minnesota Center for Immunology has identified key proteins that influence immune response strategies, a finding that could influence new vaccination approaches.

The study, published in the latest edition of Nature Immunology, looked closely at the KLF2 and S1P1 genes, and how their expression impacted the immune strategy of a cell.

The immune system has two main strategies to empower white blood cells, or lymphocytes, to resist infections of the body.

The first strategy, called recirculation, is a process where white blood cells are carried around in circulating blood, allowing rapid access to organs once an immune response has begun.

The second major strategy allows lymphocytes to migrate into tissues and remain there long-term, creating a kind of rapid response team to any infectious organism that enters the body. These cells are called resident memory T-cells or Trm, and they play a dominant role in initiating immune responses that control infections.

"A key question we had was how lymphocytes make the choice to be a recirculator or a resident," said Stephen Jameson, Ph.D., a professor in the Center for Immunology and Department of Laboratory Medicine and Pathology in the University of Minnesota Medical School. "We already knew the protein KLF2 regulates the expression of genes. One of those genes, called S1P1, allows lymphocytes to leave tissues and begin recirculating."

Intrigued by the impact of KLF2 and S1P1 on lymphocytes' ability to move out of tissues, Jameson and colleagues wanted to compare resident and recirculating cells and the KLF2 and S1P1 levels. They found that resident T-cells had lost expression of the KLF2 and S1P1 genes.

The next step was finding what controlled the expression of KLF1 and S1P1. Jameson's team was able to pinpoint cytokines as playing a major role in this cell decision-making process.

"Cytokines are soluble proteins that act similar to hormones for the immune system," said Jameson. "We found the cytokines can instruct cells to become resident memory cells, thereby may be useful for bolstering local immunity."

Though further research is needed to define the biochemical signals dictating how recirculation versus residency is chosen, learning more about these key signals instructing T-cells to determine their strategic immunity role could significantly improve vaccination approaches. Researchers may be able to use the knowledge and develop technology to focus memory T-cells to form a barrier to infections.

This project was supported by funding from an NIH MERIT award to Jameson (R37 AI38903) and an NIH training grant for Cara Skon (T32 AI07313), as well as other NIH grants to contributing authors (R37 AI39560 and T90 DE022732).

The Center for Immunology is a interdisciplinary unit at the University of Minnesota devoted to advancing the field of Immunology and educating future Immunologists. Learn more at http://www.immunology.umn.edu.

Masonic Cancer Center, University of Minnesota is part of the University's Academic Health Center. It is designated by the National Cancer Institute as a Comprehensive Cancer Center. For more information about the Masonic Cancer Center, visit http://www.cancer.umn.edu or call 612-624-2620. The University of Minnesota Medical School, with its two campuses in the Twin Cities and Duluth, is a leading educator of the next generation of physicians. Our graduates and the school's 3,800 faculty physicians and scientists advance patient care, discover biomedical research breakthroughs with more than $180 million in sponsored research annually, and enhance health through world-class patient care for the state of Minnesota and beyond. Visit http://www.med.umn.edu to learn more.

Caroline Marin | EurekAlert!
Further information:
http://www.umn.edu
http://www.med.umn.edu

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>