Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


U of M researchers identify genetic variation behind acute myeloid leukemia treatment success

Researchers from the College of Pharmacy and Medical School working within the Masonic Cancer Center, University of Minnesota, have partnered to identify genetic variations that may help signal which acute myeloid leukemia (AML) patients will benefit or not benefit from one of the newest antileukemic agents.

Their study is published today in Clinical Cancer Research.

In the latest study, U of M researchers evaluated how inherited genetic polymorphisms in CD33, a protein that naturally occurs in most leukemia cells, could affect clinical outcomes of patients treated with an existing chemotherapy drug, gemtuzumab ozogamicin (GO), an immuno-conjugate between anti-CD33 antibody and a cytotoxin known as calicheamicin, which binds to CD33 on leukemic cells. As GO is internalized by leukemia cells, the cytotoxin is released, causing DNA damage and generating leukemic cell death.

In recent clinical trials GO has been shown to induce remission and improve survival in subset of patients with AML, however there is wide inter-patient variation in response.

Jatinder Lamba, Ph.D., and colleagues identified and evaluated three genetic variations of CD33 in two groups of patients with pediatric AML – one group that received the drug GO, and one group that did not. They found that specific genetic variation in CD33 that significantly affected the clinical outcome of AML patients who received GO based chemotherapy.

"Understanding how genetics play a role in how drugs work is extremely useful, particularly for a drug like GO which has shown a very heterogeneous response in AML patients," said Jatinder Lamba, Ph.D., the study's lead author and a researcher who holds appointments in both the College of Pharmacy and the Masonic Cancer Center, University of Minnesota. "Our latest findings lead us to believe that genetic variation in CD33 influences how AML patients' leukemic cell responds to GO."

AML is a cancer of the blood and bone marrow, and is the second most common form of leukemia in children. Though the most common type of treatment for AML is chemotherapy, Lamba says the disease remains hard to treat and newer, more effective therapies are needed.

"The overall goal of our study was to use genetic data to predict beneficial or adverse response to a specific drug, thus opening up opportunities to use this information for drug optimization to achieve maximum therapeutic efficacy and minimum toxicity. Our hope is that our research could serve as a marker of prognostic significance for clinicians to select the therapy that has the greatest odds of being effective for individual patients based on their CD33 genotype."

Other University of Minnesota researchers involved in the study include Leslie Mortland, M.D., from the University of Minnesota Medical School and Betsy Hirsch, Ph.D., from the Medical School and the Masonic Cancer Center, University of Minnesota.

The University of Minnesota College of Pharmacy, the only school of pharmacy in Minnesota, offers its program on the Twin Cities and Duluth campuses. Founded in 1892, the College of Pharmacy educates pharmacists and scientists and engages in research and practice to improve the health of the people of Minnesota and society. The college is part of the Academic Health Center, which is home to the University of Minnesota's six health professional schools and colleges as well as several health-related centers and institutes. Learn more at

The University of Minnesota Medical School, with its two campuses in the Twin Cities and Duluth, is a leading educator of the next generation of physicians. Our graduates and the school's 3,800 faculty physicians and scientists advance patient care, discover biomedical research breakthroughs with more than $180 million in sponsored research annually, and enhance health through world-class patient care for the state of Minnesota and beyond. Visit to learn more.

Masonic Cancer Center, University of Minnesota is part of the University's Academic Health Center. It is designated by the National Cancer Institute as a Comprehensive Cancer Center. For more information about the Masonic Cancer Center, visit or call 612-624-2620.

Amy Leslie | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>