Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers identify genetic variation behind acute myeloid leukemia treatment success

27.02.2013
Researchers from the College of Pharmacy and Medical School working within the Masonic Cancer Center, University of Minnesota, have partnered to identify genetic variations that may help signal which acute myeloid leukemia (AML) patients will benefit or not benefit from one of the newest antileukemic agents.

Their study is published today in Clinical Cancer Research.

In the latest study, U of M researchers evaluated how inherited genetic polymorphisms in CD33, a protein that naturally occurs in most leukemia cells, could affect clinical outcomes of patients treated with an existing chemotherapy drug, gemtuzumab ozogamicin (GO), an immuno-conjugate between anti-CD33 antibody and a cytotoxin known as calicheamicin, which binds to CD33 on leukemic cells. As GO is internalized by leukemia cells, the cytotoxin is released, causing DNA damage and generating leukemic cell death.

In recent clinical trials GO has been shown to induce remission and improve survival in subset of patients with AML, however there is wide inter-patient variation in response.

Jatinder Lamba, Ph.D., and colleagues identified and evaluated three genetic variations of CD33 in two groups of patients with pediatric AML – one group that received the drug GO, and one group that did not. They found that specific genetic variation in CD33 that significantly affected the clinical outcome of AML patients who received GO based chemotherapy.

"Understanding how genetics play a role in how drugs work is extremely useful, particularly for a drug like GO which has shown a very heterogeneous response in AML patients," said Jatinder Lamba, Ph.D., the study's lead author and a researcher who holds appointments in both the College of Pharmacy and the Masonic Cancer Center, University of Minnesota. "Our latest findings lead us to believe that genetic variation in CD33 influences how AML patients' leukemic cell responds to GO."

AML is a cancer of the blood and bone marrow, and is the second most common form of leukemia in children. Though the most common type of treatment for AML is chemotherapy, Lamba says the disease remains hard to treat and newer, more effective therapies are needed.

"The overall goal of our study was to use genetic data to predict beneficial or adverse response to a specific drug, thus opening up opportunities to use this information for drug optimization to achieve maximum therapeutic efficacy and minimum toxicity. Our hope is that our research could serve as a marker of prognostic significance for clinicians to select the therapy that has the greatest odds of being effective for individual patients based on their CD33 genotype."

Other University of Minnesota researchers involved in the study include Leslie Mortland, M.D., from the University of Minnesota Medical School and Betsy Hirsch, Ph.D., from the Medical School and the Masonic Cancer Center, University of Minnesota.

The University of Minnesota College of Pharmacy, the only school of pharmacy in Minnesota, offers its program on the Twin Cities and Duluth campuses. Founded in 1892, the College of Pharmacy educates pharmacists and scientists and engages in research and practice to improve the health of the people of Minnesota and society. The college is part of the Academic Health Center, which is home to the University of Minnesota's six health professional schools and colleges as well as several health-related centers and institutes. Learn more at www.pharmacy.umn.edu.

The University of Minnesota Medical School, with its two campuses in the Twin Cities and Duluth, is a leading educator of the next generation of physicians. Our graduates and the school's 3,800 faculty physicians and scientists advance patient care, discover biomedical research breakthroughs with more than $180 million in sponsored research annually, and enhance health through world-class patient care for the state of Minnesota and beyond. Visit www.med.umn.edu to learn more.

Masonic Cancer Center, University of Minnesota is part of the University's Academic Health Center. It is designated by the National Cancer Institute as a Comprehensive Cancer Center. For more information about the Masonic Cancer Center, visit www.cancer.umn.edu or call 612-624-2620.

Amy Leslie | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>