Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers close in on technology for making renewable petroleum

24.03.2011
University of Minnesota researchers are a key step closer to making renewable petroleum fuels using bacteria, sunlight and dioxide, a goal funded by a $2.2 million United States Department of Energy grant.

Graduate student Janice Frias, who earned her doctorate in January, made the critical step by figuring out how to use a protein to transform fatty acids produced by the bacteria into ketones, which can be cracked to make hydrocarbon fuels. The university is filing patents on the process.

The research is published in the April 1 issue of the Journal of Biological Chemistry. Frias, whose advisor was Larry Wackett, Distinguished McKnight Professor of Biochemistry, is lead author. Other team members include organic chemist Jack Richman, a researcher in the College of Biological Sciences' Department of Biochemistry, Molecular Biology and Biophysics, and undergraduate Jasmine Erickson, a junior in the College of Biological Sciences. Wackett, who is senior author, is a faculty member in the College of Biological Sciences and the university's BioTechnology Institute.

"Janice Frias is a very capable and hard-working young scientist," Wackett says. "She exemplifies the valuable role graduate students play at a public research university."

Aditya Bhan and Lanny Schmidt, chemical engineering professors in the College of Science and Engineering, are turning the ketones into diesel fuel using catalytic technology they have developed. The ability to produce ketones opens the door to making petroleum-like hydrocarbon fuels using only bacteria, sunlight and carbon dioxide.

"There is enormous interest in using carbon dioxide to make hydrocarbon fuels," Wackett says. "CO2 is the major greenhouse gas mediating global climate change, so removing it from the atmosphere is good for the environment. It's also free. And we can use the same infrastructure to process and transport this new hydrocarbon fuel that we use for fossil fuels."

The research is funded by a $2.2 million grant from the U.S. Department of Energy's Advanced Research Projects Agency-energy (ARPA-e) program, created to stimulate American leadership in renewable energy technology.

The U of M proposal was one of only 37 selected from 3,700 and one of only three featured in the New York Times when the grants were announced in October 2009. The University of Minnesota's Initiative for Renewable Energy and the Environment (IREE) and the College of Biological Sciences also provided funding.

Wackett is principal investigator for the ARPA-e grant. His team of co-investigators includes Jeffrey Gralnick, assistant professor of microbiology and Marc von Keitz, chief technical officer of BioCee, as well as Bhan and Schmidt. They are the only group using a photosynthetic bacterium and a hydrocarbon-producing bacterium together to make hydrocarbons from carbon dioxide.

The U of M team is using Synechococcus, a bacterium that fixes carbon dioxide in sunlight and converts CO2 to sugars. Next, they feed the sugars to Shewanella, a bacterium that produces hydrocarbons. This turns CO2, a greenhouse gas produced by combustion of fossil fuel petroleum, into hydrocarbons.

Hydrocarbons (made from carbon and hydrogen) are the main component of fossil fuels. It took hundreds of millions of years of heat and compression to produce fossil fuels, which experts expect to be largely depleted within 50 years.

Jeff Falk | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>