Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers close in on technology for making renewable petroleum

24.03.2011
University of Minnesota researchers are a key step closer to making renewable petroleum fuels using bacteria, sunlight and dioxide, a goal funded by a $2.2 million United States Department of Energy grant.

Graduate student Janice Frias, who earned her doctorate in January, made the critical step by figuring out how to use a protein to transform fatty acids produced by the bacteria into ketones, which can be cracked to make hydrocarbon fuels. The university is filing patents on the process.

The research is published in the April 1 issue of the Journal of Biological Chemistry. Frias, whose advisor was Larry Wackett, Distinguished McKnight Professor of Biochemistry, is lead author. Other team members include organic chemist Jack Richman, a researcher in the College of Biological Sciences' Department of Biochemistry, Molecular Biology and Biophysics, and undergraduate Jasmine Erickson, a junior in the College of Biological Sciences. Wackett, who is senior author, is a faculty member in the College of Biological Sciences and the university's BioTechnology Institute.

"Janice Frias is a very capable and hard-working young scientist," Wackett says. "She exemplifies the valuable role graduate students play at a public research university."

Aditya Bhan and Lanny Schmidt, chemical engineering professors in the College of Science and Engineering, are turning the ketones into diesel fuel using catalytic technology they have developed. The ability to produce ketones opens the door to making petroleum-like hydrocarbon fuels using only bacteria, sunlight and carbon dioxide.

"There is enormous interest in using carbon dioxide to make hydrocarbon fuels," Wackett says. "CO2 is the major greenhouse gas mediating global climate change, so removing it from the atmosphere is good for the environment. It's also free. And we can use the same infrastructure to process and transport this new hydrocarbon fuel that we use for fossil fuels."

The research is funded by a $2.2 million grant from the U.S. Department of Energy's Advanced Research Projects Agency-energy (ARPA-e) program, created to stimulate American leadership in renewable energy technology.

The U of M proposal was one of only 37 selected from 3,700 and one of only three featured in the New York Times when the grants were announced in October 2009. The University of Minnesota's Initiative for Renewable Energy and the Environment (IREE) and the College of Biological Sciences also provided funding.

Wackett is principal investigator for the ARPA-e grant. His team of co-investigators includes Jeffrey Gralnick, assistant professor of microbiology and Marc von Keitz, chief technical officer of BioCee, as well as Bhan and Schmidt. They are the only group using a photosynthetic bacterium and a hydrocarbon-producing bacterium together to make hydrocarbons from carbon dioxide.

The U of M team is using Synechococcus, a bacterium that fixes carbon dioxide in sunlight and converts CO2 to sugars. Next, they feed the sugars to Shewanella, a bacterium that produces hydrocarbons. This turns CO2, a greenhouse gas produced by combustion of fossil fuel petroleum, into hydrocarbons.

Hydrocarbons (made from carbon and hydrogen) are the main component of fossil fuels. It took hundreds of millions of years of heat and compression to produce fossil fuels, which experts expect to be largely depleted within 50 years.

Jeff Falk | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>