Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers close in on technology for making renewable petroleum

24.03.2011
University of Minnesota researchers are a key step closer to making renewable petroleum fuels using bacteria, sunlight and dioxide, a goal funded by a $2.2 million United States Department of Energy grant.

Graduate student Janice Frias, who earned her doctorate in January, made the critical step by figuring out how to use a protein to transform fatty acids produced by the bacteria into ketones, which can be cracked to make hydrocarbon fuels. The university is filing patents on the process.

The research is published in the April 1 issue of the Journal of Biological Chemistry. Frias, whose advisor was Larry Wackett, Distinguished McKnight Professor of Biochemistry, is lead author. Other team members include organic chemist Jack Richman, a researcher in the College of Biological Sciences' Department of Biochemistry, Molecular Biology and Biophysics, and undergraduate Jasmine Erickson, a junior in the College of Biological Sciences. Wackett, who is senior author, is a faculty member in the College of Biological Sciences and the university's BioTechnology Institute.

"Janice Frias is a very capable and hard-working young scientist," Wackett says. "She exemplifies the valuable role graduate students play at a public research university."

Aditya Bhan and Lanny Schmidt, chemical engineering professors in the College of Science and Engineering, are turning the ketones into diesel fuel using catalytic technology they have developed. The ability to produce ketones opens the door to making petroleum-like hydrocarbon fuels using only bacteria, sunlight and carbon dioxide.

"There is enormous interest in using carbon dioxide to make hydrocarbon fuels," Wackett says. "CO2 is the major greenhouse gas mediating global climate change, so removing it from the atmosphere is good for the environment. It's also free. And we can use the same infrastructure to process and transport this new hydrocarbon fuel that we use for fossil fuels."

The research is funded by a $2.2 million grant from the U.S. Department of Energy's Advanced Research Projects Agency-energy (ARPA-e) program, created to stimulate American leadership in renewable energy technology.

The U of M proposal was one of only 37 selected from 3,700 and one of only three featured in the New York Times when the grants were announced in October 2009. The University of Minnesota's Initiative for Renewable Energy and the Environment (IREE) and the College of Biological Sciences also provided funding.

Wackett is principal investigator for the ARPA-e grant. His team of co-investigators includes Jeffrey Gralnick, assistant professor of microbiology and Marc von Keitz, chief technical officer of BioCee, as well as Bhan and Schmidt. They are the only group using a photosynthetic bacterium and a hydrocarbon-producing bacterium together to make hydrocarbons from carbon dioxide.

The U of M team is using Synechococcus, a bacterium that fixes carbon dioxide in sunlight and converts CO2 to sugars. Next, they feed the sugars to Shewanella, a bacterium that produces hydrocarbons. This turns CO2, a greenhouse gas produced by combustion of fossil fuel petroleum, into hydrocarbons.

Hydrocarbons (made from carbon and hydrogen) are the main component of fossil fuels. It took hundreds of millions of years of heat and compression to produce fossil fuels, which experts expect to be largely depleted within 50 years.

Jeff Falk | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Cloud Formation: How Feldspar Acts as Ice Nucleus
09.12.2016 | Karlsruher Institut für Technologie

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>