U of M researcher helps unlock 30 new genes responsible for early-onset puberty

Many of these genes are also known to influence body fatness, obesity, and energy metabolism. Prior to the multi-institutional study, only four genes had been identified as contributing to the process.

The findings, which were reported in Nature Genetics, help to explain why girls who are obese tend to have earlier puberty: some of the same genes are involved in both outcomes. Early menarche, or the first menstrual cycle, is linked to a variety of chronic adulthood diseases, including breast cancer, cardiovascular diseases, and type 2 diabetes.

As a result of these discoveries, Demerath suggests that health care providers and other professionals pay particularly close attention to girls with a high risk of obesity (those who are overweight in childhood or who have a parental history of obesity) and intervene with them, as those girls are also genetically more susceptible to early menarche.

“Early menarche is caused by both genetics and environmental factors,” said Demerath. “We already knew that diet and physical exercise play a role in menarche, but now that we’ve identified more of the specific genes involved, this gives us clues about how to intervene on the process. By showing how hereditary and biological factors contribute to early menarche, we hope to one day allow health care providers to identify girls with increased risk of early menarche, and help them avoid the complications of early-onset puberty.”

In the large-scale, NIH-funded study, researchers from 104 institutions collected data from more than 100,000 women from the United States, Europe, and Australia. This includes women from the Twin Cities area enrolled in the Atherosclerosis Risk in Communities (ARIC) study. Not only were researchers able to identify these new genes, but they also found that many of them play a role in body weight regulation or biological pathways related to fat metabolism. The study findings also suggest that menarche is a result of a complex range of biological processes.

Today, girls are menstruating earlier than ever before. In the mid-1900s, the average age of menarche was 14-15 years. The average age today is 12-13 years.

“We now know that hormone regulation, cell development, and other mechanisms are related to menarche,” said Demerath.

According to Demerath, the next step for researchers is to examine whether some of these genes also influence sexual development in males, whether the genes are related to general growth in size as well as development, the points in the life cycle when the genes are most powerfully expressed, and how environmental factors such as diet and physical activity can modify their effects.

School of Public Health
For more than 60 years, the University of Minnesota School of Public Health has been among the top accredited schools of public health in the nation. With a mission focused on research, teaching, and service, the school attracts nearly $100 million in research funding each year, has more than 100 faculty members and more than 1,300 students, and is engaged in community outreach activities locally, nationally and in dozens of countries worldwide. For more information, visit www.sph.umn.edu.
Emily Jensen
Academic Health Center
612-624-9163
jense888@umn.edu
Kris Stouffer
School of Public Health
612-624-4460
stouffer@umn.edu

Media Contact

Emily Jensen EurekAlert!

More Information:

http://www.umn.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors