Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M experts develop technique to duplicate immunity boosting cells to unprecedented levels

19.05.2011
New technique will give patients a better chance of having a successful bone marrow or organ transplant

University of Minnesota Medical School researchers have discovered a method to quickly and exponentially grow regulatory T-cells – also known as "suppressor cells." The new process enables replication of the cells by tens of millions in several weeks, a dramatic increase over previous duplication methods. Historically, regulatory T-cells have been difficult to replicate.

The new technique will give patients a better chance of having a successful bone marrow or organ transplant, and will have profound implications for patients with autoimmune diseases such as lupus, type 1 diabetes, Crohn's disease and multiple sclerosis.

The use of the new replication technique has already shown promising effects in the treatment of acute graft-versus-host disease; a post-transplant condition in which T-cells from the donor's bone marrow recognizes a recipient's body as foreign, and tries to attack.

"When regulatory T-cells don't respond to inflammation quickly enough to suppress an immune system response, the patient's own immune response can do considerable harm after a transplant, injuring organs, joints and other tissues of the body," said Dr. Bruce Blazar, senior author of the study and Director of the Clinical and Translational Science Institute at the U of M.

Compounding the challenge is that humans have a limited supply of regulatory T-cells, Blazar said. So even if the immune system's cells respond appropriately, there may not be enough suppressor cells to stop errant reactions in time before the immune response causes widespread tissue damage.

Researchers felt that by developing a way to replicate the cells – which have been historically challenging to coax into high rates of duplication – they could increase transplantation success rates.

Between 30-40 percent of all related bone marrow transplant patients experience graft-versus-host disease, and between 10-30 percent of kidney transplants and 60-80 percent of liver transplant recipients experience acute rejection, according to the National Institutes of Health.

About the New Method

The immunology team, led by Blazar, developed a method to extract regulatory T-cells from blood and subsequently deliver the right combination of signals to make the cells replicate up to 50 million fold. Previous methods to duplicate these cells led to only 70-fold expansion at best.

The findings are published in the May 18 edition of Science Translational Medicine.

"The ability to deliver such large quantities of these cells to patients before they undergo transplantation significantly reduces the chances of graft versus host disease and rejection of a transplanted organ," Blazar said.

In animal models and in human clinical trials (where smaller doses of regulatory T cells were given to patients), Blazar's hypothesis came to fruition: Animals and patients became less likely to develop severe immune reactions that caused tissue damage.

The next step in Blazar's work is phase 1 human clinical testing headed by the U of M's Dr. John Wagner, a world renowned researcher who has been a leader in the field of blood and marrow transplantation. Wagner plans to lead a team of doctors who will administer increasing doses of regulatory T-cells before bone marrow transplants using Blazar's new expansion method.

"This is truly exciting and a major, major breakthrough with profound implications in the treatment of our patients," Wagner said. "If we can super charge patients' immune systems before we do a transplant, we hope to eliminate the chance of graft-versus-host disease or rejection of the transplanted organ. Furthermore, we hope to move these trials ahead quickly to treat autoimmune diseases which affect hundreds of thousands of people worldwide."

Alongside Drs. Blazar and Wagner, U of M assistant professor Dr. Keli Hippen, the lead investigator of the study, pushed this new technology forward.

Collaborators from the University of Pennsylvania provided the key cell lines that made the research possible. Penn scientists engineered artificial Antigen Presenting Cells (aAPCs) which massively expanded regulatory T-cells. The process by which they were replicated could be used to generate a master cell bank that could be used to treat a large number of patients, making therapy much more feasible and cost effective.

The study was funded by National Institutes of Health, the Leukemia and Lymphoma Society and the Childrens' Cancer Research Fund.

Nick Hanson | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>