Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M discovery about biological clocks overturns long-held theory

12.10.2009
University of Michigan mathematicians and their British colleagues say they have identified the signal that the brain sends to the rest of the body to control biological rhythms, a finding that overturns a long-held theory about our internal clock.

Understanding how the human biological clock works is an essential step toward correcting sleep problems like insomnia and jet lag. New insights about the body's central pacemaker might also, someday, advance efforts to treat diseases influenced by the internal clock, including cancer, Alzheimer's disease and mood disorders, said University of Michigan mathematician Daniel Forger.

"Knowing what the signal is will help us learn how to adjust it, in order to help people," said Forger, an associate professor of mathematics and a member of the U-M's Center for Computational Medicine and Bioinformatics. "We have cracked the code, and the information could have a tremendous impact on all sorts of diseases that are affected by the clock."

The body's main time-keeper resides in a region of the central brain called the suprachiasmatic nuclei, or SCN. For decades, researchers have believed that it is the rate at which SCN cells fire electrical pulses---fast during the day and slow at night---that controls time-keeping throughout the body.

Imagine a metronome in the brain that ticks quickly throughout the day, then slows its pace at night. The rest of the body hears the ticking and adjusts its daily rhythms, also known as circadian rhythms, accordingly.

That's the idea that has prevailed for more than two decades. But new evidence compiled by Forger and his colleagues shows that "the old model is, frankly, wrong," Forger said.

The true signaling mechanism is very different: The timing signal sent from the SCN is encoded in a complex firing pattern that had previously been overlooked, the researchers concluded. Forger and U-M graduate student Casey Diekman, along with Dr. Mino Belle and Hugh Piggins of the University of Manchester in England, report their findings in the Oct. 9 edition of Science.

To test predictions made by Forger and Diekman's mathematical model, the British scientists collected data on firing patterns from more than 400 mouse SCN cells. The U-M scientists then plugged the experimental results into their model and found that "the experimental data were almost exactly what the model had predicted," Forger said.

Though the experiments were done with mice, Forger said it's likely that the same mechanism is at work in humans, since timekeeping systems are similar in all mammals.

The SCN contains both clock cells (which express a gene call per1) and non-clock cells. For years, circadian-biology researchers have been recording electrical signals from a mix of both types of cells. That led to a misleading picture of the clock's inner workings.

But Forger's British colleagues were able to separate clock cells from non-clock cells by zeroing in on the ones that expressed the per1 gene. Then they recorded electrical signals produced exclusively by those clock cells. The pattern that emerged bolstered the audacious new theory.

"This is a perfect example of how a mathematical model can make predictions that are completely at odds with the prevailing views yet, upon further experimentation, turn out to be dead-on," Forger said.

The researchers found that during the day, SCN cells expressing per1 sustain an electrically excited state but do not fire. They fire for a brief period around dusk, then remain quiet throughout the night before releasing another burst of activity around dawn. This firing pattern is the signal, or code, the brain sends to the rest of the body so it can keep time.

"The old theory was that the cells in the SCN which contain the clock are firing fast during the day but slow at night. But now we've shown that the cells that actually contain the clock mechanism are silent during the day, when everybody thought they were firing fast," Diekman said.

Piggins said the findings "force us to completely reassess what we thought we knew about electrical activity in the brain's circadian clock." In addition, the results demonstrate the importance of interdisciplinary collaborative research, he said.

"This work also raises important questions about whether the brain acts in an analog or a digital way," Belle said.

Diekman is a doctoral student in bioinformatics, as well as industrial and operations engineering. He is a National Science Foundation Graduate Research Fellow. Forger is an Air Force Office of Scientific Research Young Investigator.

Jim Erickson | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>