Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of A maps vaccine for deadly pathogenic fungus

01.06.2012
University of Alberta researchers have made breakthrough use of 3-D magnetic resonance technology to map the structure of a common fungus that is potentially deadly for individuals with impaired immune function. The work could pave the way for development of an effective vaccine.
The researchers targeted Candida, a pathogen that in its most virulent form has led to more than 70,000 bloodstream infections in North American hospital patients. Health officials estimate that death rate from this bloodstream infection is 40 per cent.

Lead U of A researchers Margaret Johnson and David Bundle as well as collaborators, at the Alberta Glycomics Centre, used nuclear magnetic resonance for a three-dimensional examination of the fungus at an atomic scale that measures less than 100 millionth of a centimetre.
The process, called molecular recognition allowed researchers to examine carbohydrate and antibody molecules related to the fungus to determine what sort of vaccine can best combat Candida.

Johnson described the three-dimensional approach to vaccinology as giving researchers a clear picture of how a vaccine must physically fit against the surface of the fungus.

The researchers used their findings to design test vaccines that produced positive results in containing the fungus. "Our multi-pronged strategy allowed us to observe a new type of molecular recognition," she said.

Johnson added if the private sector chooses to complete the development of a vaccine it could be 10 years before the drug is available.

Johnson and Bundle were assisted by U of A researcher Jonathan Cartmell and colleagues at the National University of Ireland and University of Georgia. The research was published May 25 in the Journal of Biological Chemistry.

Brian Murphy | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>