Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of A maps vaccine for deadly pathogenic fungus

01.06.2012
University of Alberta researchers have made breakthrough use of 3-D magnetic resonance technology to map the structure of a common fungus that is potentially deadly for individuals with impaired immune function. The work could pave the way for development of an effective vaccine.
The researchers targeted Candida, a pathogen that in its most virulent form has led to more than 70,000 bloodstream infections in North American hospital patients. Health officials estimate that death rate from this bloodstream infection is 40 per cent.

Lead U of A researchers Margaret Johnson and David Bundle as well as collaborators, at the Alberta Glycomics Centre, used nuclear magnetic resonance for a three-dimensional examination of the fungus at an atomic scale that measures less than 100 millionth of a centimetre.
The process, called molecular recognition allowed researchers to examine carbohydrate and antibody molecules related to the fungus to determine what sort of vaccine can best combat Candida.

Johnson described the three-dimensional approach to vaccinology as giving researchers a clear picture of how a vaccine must physically fit against the surface of the fungus.

The researchers used their findings to design test vaccines that produced positive results in containing the fungus. "Our multi-pronged strategy allowed us to observe a new type of molecular recognition," she said.

Johnson added if the private sector chooses to complete the development of a vaccine it could be 10 years before the drug is available.

Johnson and Bundle were assisted by U of A researcher Jonathan Cartmell and colleagues at the National University of Ireland and University of Georgia. The research was published May 25 in the Journal of Biological Chemistry.

Brian Murphy | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>