U of A chemistry team produces a 'game-changing' catalyst

The research led by U of A chemistry professor Steven Bergens targeted the organic compounds known as amides, which are raw materials used by many industries to make a variety of chemical products. Bergens and his research team found that combining hydrogen with their new catalyst transforms amides into a variety of desired chemical products efficiently, safety and without potentially environmentally dangerous waste.

The new catalyst is considered to be green because it produces no by-products and it uses hydrogen that can be produced easily by any industry on site. Any excess hydrogen remaining after the reaction can be reused or simply burned to generate water and heating energy. In contrast, the current, conventional method used by industry requires expensive and dangerous shipping of tons of highly flammable, reactive chemicals by truck or rail, and it also produces large amounts of waste that must be removed at added cost and threat to the environment.

Researchers around the world have been working for more than 50 years to find a catalytic system for this vital class of reaction that operates efficiently and produces little to no waste.

Currently industries such agrochemicals and pharmaceuticals must ship huge quantities of highly reactive and flammable chemicals for mass production of their products. The waste produced is expensive to process and can be hazardous to the environment.

Bergens says the discovery of a cheap catalyst with minimal and re-useable waste has the potential to revolutionize the chemical industry from an economic and green perspective.

The work of Bergens and U of A graduate student Jeremy John was published in the journal Angewandte Chemie.

Media Contact

Brian Murphy EurekAlert!

More Information:

http://www.ualberta.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors