Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of A chemistry team produces a 'game-changing' catalyst

28.09.2011
University of Alberta chemistry researchers have discovered an active catalyst that has the potential to improve the efficiency and environmental impact of manufacturing processes used to make products such as agrochemicals and pharmaceuticals.

The research led by U of A chemistry professor Steven Bergens targeted the organic compounds known as amides, which are raw materials used by many industries to make a variety of chemical products. Bergens and his research team found that combining hydrogen with their new catalyst transforms amides into a variety of desired chemical products efficiently, safety and without potentially environmentally dangerous waste.

The new catalyst is considered to be green because it produces no by-products and it uses hydrogen that can be produced easily by any industry on site. Any excess hydrogen remaining after the reaction can be reused or simply burned to generate water and heating energy. In contrast, the current, conventional method used by industry requires expensive and dangerous shipping of tons of highly flammable, reactive chemicals by truck or rail, and it also produces large amounts of waste that must be removed at added cost and threat to the environment.

Researchers around the world have been working for more than 50 years to find a catalytic system for this vital class of reaction that operates efficiently and produces little to no waste.

Currently industries such agrochemicals and pharmaceuticals must ship huge quantities of highly reactive and flammable chemicals for mass production of their products. The waste produced is expensive to process and can be hazardous to the environment.

Bergens says the discovery of a cheap catalyst with minimal and re-useable waste has the potential to revolutionize the chemical industry from an economic and green perspective.

The work of Bergens and U of A graduate student Jeremy John was published in the journal Angewandte Chemie.

Brian Murphy | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>