Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Typically human brain development older than first thought

08.05.2012
A large neonate brain, rapid brain growth and large frontal lobes are the typical hallmarks of human brain development.
These appeared much earlier in the hominin family tree than was originally thought, as anthropologists from the University of Zurich who re-examined the Taung child’s fossil cranial sutures and compared them with other fossil skulls now prove. The late fusion of the cranial sutures in the Taung child is also found in many other members of the Australopithecus africanus species and the earliest examples of the Homo genus.

The Australopithecus child’s skull discovered in Taung in 1924 is an icon of human evolution. Of the neurocranium, the fossilized sediment filling has survived. The imprints of the original cerebral gyri on this rock core have fascinated paleoanthropologists from the outset and triggered much debate on the evolution of the Australopithecus brain.
Fossil cranial sutures cast in whole new light
The imprints of the cranial sutures that are also clearly visible on the rock core had long been forgotten. Now, anthropologists from the University of Zurich teamed up with researchers from Florida State University to examine their importance for brain growth in the Taung child. Sutures are bone growth fronts where the neurocranium can expand as the brain grows. Once the brain stops growing, the sutures ossify. The Taung child, who died at about four years of age, has something unusual: a suture between the two halves of the frontal bone. According to the research team’s analyses, this so-called metopic suture is already ossified in most chimpanzees of the Taung child’s age, but often is not in human children of the same age.
Typical brain development older than thought
As the researchers now demonstrate using computer-imaging comparisons of fossil crania, the late fusion of the metopic suture in the Taung child is not unique in fossils. It is also found in many other members of the species Australopithecus africanus, not to mention the earliest examples of our Homo genus. The three typical hallmarks of human brain development – a large neonate brain, rapid brain growth and large frontal lobes – therefore appeared much earlier in the hominin family tree than was originally thought.
Fast-growing brain behind late fusion
“The late fusion of the metopic suture in humans is linked to our special brain growth,” explains Marcia Ponce de León, a senior lecturer at the University of Zurich’s Anthropological Institute. A new-born human’s brain is as big as an adult chimpanzee’s. Accordingly, the cranium, which is deformed as it passes through the mother’s pelvis, is also large. This is only possible because all the cranial sutures are still wide open. After birth, the human brain grows extremely quickly, especially the large frontal lobes. “The late fusion of the metopic suture must be directly linked to this,” adds Ponce de León. In chimpanzees, these problems do not exist. Their neonates’ heads are comparatively small, their brain growth slows shortly after birth and the frontal lobes are not as pronounced. Consequently, the metopic suture also ossifies early.
Further reading:
Dean Falk, Christoph P. Zollikofer, Naoki Morimoto and Marcia S. Ponce de León. Metopic suture of Taung (Australopithecus africanus) and its implications for hominin brain evolution. PNAS, May 7, 2012. doi/10.1073/pnas.1119752109
Contact:
Dr. Marcia Ponce de León
Anthropological Institute
University of Zurich
Tel.: +41 44 635 54 27
Email: marcia@aim.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated

25.04.2018 | Power and Electrical Engineering

Electrode shape improves neurostimulation for small targets

25.04.2018 | Medical Engineering

Silicon as a new storage material for the batteries of the future

25.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>