Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Typically human brain development older than first thought

08.05.2012
A large neonate brain, rapid brain growth and large frontal lobes are the typical hallmarks of human brain development.
These appeared much earlier in the hominin family tree than was originally thought, as anthropologists from the University of Zurich who re-examined the Taung child’s fossil cranial sutures and compared them with other fossil skulls now prove. The late fusion of the cranial sutures in the Taung child is also found in many other members of the Australopithecus africanus species and the earliest examples of the Homo genus.

The Australopithecus child’s skull discovered in Taung in 1924 is an icon of human evolution. Of the neurocranium, the fossilized sediment filling has survived. The imprints of the original cerebral gyri on this rock core have fascinated paleoanthropologists from the outset and triggered much debate on the evolution of the Australopithecus brain.
Fossil cranial sutures cast in whole new light
The imprints of the cranial sutures that are also clearly visible on the rock core had long been forgotten. Now, anthropologists from the University of Zurich teamed up with researchers from Florida State University to examine their importance for brain growth in the Taung child. Sutures are bone growth fronts where the neurocranium can expand as the brain grows. Once the brain stops growing, the sutures ossify. The Taung child, who died at about four years of age, has something unusual: a suture between the two halves of the frontal bone. According to the research team’s analyses, this so-called metopic suture is already ossified in most chimpanzees of the Taung child’s age, but often is not in human children of the same age.
Typical brain development older than thought
As the researchers now demonstrate using computer-imaging comparisons of fossil crania, the late fusion of the metopic suture in the Taung child is not unique in fossils. It is also found in many other members of the species Australopithecus africanus, not to mention the earliest examples of our Homo genus. The three typical hallmarks of human brain development – a large neonate brain, rapid brain growth and large frontal lobes – therefore appeared much earlier in the hominin family tree than was originally thought.
Fast-growing brain behind late fusion
“The late fusion of the metopic suture in humans is linked to our special brain growth,” explains Marcia Ponce de León, a senior lecturer at the University of Zurich’s Anthropological Institute. A new-born human’s brain is as big as an adult chimpanzee’s. Accordingly, the cranium, which is deformed as it passes through the mother’s pelvis, is also large. This is only possible because all the cranial sutures are still wide open. After birth, the human brain grows extremely quickly, especially the large frontal lobes. “The late fusion of the metopic suture must be directly linked to this,” adds Ponce de León. In chimpanzees, these problems do not exist. Their neonates’ heads are comparatively small, their brain growth slows shortly after birth and the frontal lobes are not as pronounced. Consequently, the metopic suture also ossifies early.
Further reading:
Dean Falk, Christoph P. Zollikofer, Naoki Morimoto and Marcia S. Ponce de León. Metopic suture of Taung (Australopithecus africanus) and its implications for hominin brain evolution. PNAS, May 7, 2012. doi/10.1073/pnas.1119752109
Contact:
Dr. Marcia Ponce de León
Anthropological Institute
University of Zurich
Tel.: +41 44 635 54 27
Email: marcia@aim.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>