Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of human stem cell may be more easy to manipulate

09.06.2010
Changing growth factors produces cells that should be more useful for research, future therapies

Researchers from the Massachusetts General Hospital Center for Regenerative Medicine (MGH-CRM) and the Harvard Stem Cell Institute have a developed a new type of human pluripotent stem cell that can be manipulated more readily than currently available stem cells. As described in the June 4 Cell Stem Cell, these new cells could be used to create better cellular models of disease processes and eventually may permit repair of disease-associated gene mutations.

"It has been fairly easy to manipulate stem cells from mice, but this has not been the case for traditional human stem cells," explains Niels Geijsen, PhD, of the MGH-CRM, who led the study. "We had previously found that the growth factors in which mouse stem cells are derived define what those cells can do, and now we've applied those findings to human stem cells."

The first mammalian embryonic stem cells (ESCs) were derived from mice and have proven very useful for studying gene function and the impact of changes to individual genes. But techniques used in these studies to introduce a different version of a single gene or inactivate a particular gene were ineffective in human ESCs. In addition, human ESCs proliferate much more slowly than do cells derived from mice and grow in flat, two-dimensional colonies, while mouse ESCs form tight, three-dimensional colonies. It is been extremely difficult to propagate human ESCs from a single cell, which prevents the creation of genetically manipulated human embryonic stem cell lines.

In previous work, Geijsen and his colleagues demonstrated that the growth factor conditions under which stem cells are maintained in culture play an important role in defining the cells' functional properties. Since the growth factors appeared to make such a difference, the researchers tried to make a more useful human pluripotent cell using a new approach. They derived human induced pluripotent stem cells (iPSCs) – which are created by reprogramming adult cells and have many of the characteristics of human ECSs, including resistance to manipulation – in cultures containing the growth factor LIF, which is used in the creation of mouse ESCs.

The resulting cells visibly resembled mouse ESCs and proved amenable to a standard gene manipulation technique that exchanges matching sequences of DNA, allowing the targeted deactivation or correction of a specific gene. The ability to manipulate these new cells depended on both the continued presence of LIF and expression of the five genes that are used in reprogramming adult cells into iPSCs. If any of those factors was removed, these hLR5- (for human LIF and five reprogramming factors) iPSCs reverted to standard iPSCs.

"Genetic changes introduced into hLR5-iPSCs would be retained when they are coverted back to iPSCs, which we then can use to generate cell lines for future research, drug development and someday stem-cell based gene-correction therapies," says Geijsen. He is an assistant professor of Medicine at Harvard Medical School and a principal faculty member of the Harvard Stem Cell Institute.

Co-authors of the Cell Stem Cell paper are lead author Christa Buecker, MGH-CRM and Harvard Stem Cell Institute (HSCI); Hsu-Hsin Chen, PhD, Laurence Dahern, and Konrad Hochedlinger, PhD, MGH-CRM and HSCI; Patricia Okwieka, MGH-CRM; Jose Polo, PhD, MGH Cancer Center; Lei Bu, PhD, MGH Cardiovascular Research Center; Tahsin Stefan Barakat and Joost Gribnau, PhD, University Medical Center, Rotterdam, The Netherlands; and Andrew Porter, PhD, Imperial College London, U.K. The study was supported by grants from the National Institutes of Health, the Dutch Science Organization, the Gottlieb Daimler and Karl Benz Foundation and the National Science Council of Taiwan.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $600 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>