Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Type 2 Diabetes, Mitochondrial Damage Kills Insulin-Producing Cells

25.11.2009
Over time, patients with type 2 diabetes lose insulin-producing cells, a difficulty that aggravates their disease. Researchers at Joslin Diabetes Center now have identified a mechanism that triggers the problem, giving a chance to find targets for drugs to protect these crucial cells.

Curiously enough, the failure arises when the insulin-producing "beta" cells, located in the pancreas, themselves fail to import insulin properly. Similar failures throughout the body, producing a condition known as insulin resistance, are a common cause of type 2 diabetes.

Scientists in the lab of Joslin Principal Investigator Rohit N. Kulkarni, M.D., Ph.D., found that when a beta cell can't respond to circulating insulin, an altered molecular cascade ends up damaging the normal action of a certain molecular complex on the surface of the cell's mitochondria.

Mitochondria, known as the cell's powerhouses, produce most of every cell's supply of adenosine triphosphate, the prime fuel for cellular activity. When compromised in this way, the beta-cell's mitochondria begin to destroy it.

In research published online in PLoS ONE on November 24, Siming Liu, Ph.D., a postdoctoral fellow in the Kulkarni lab, began by studying genetically modified mice whose beta cells, and only beta cells, lacked a receptor on their cell surface that allows insulin to act.

"Experimenting with these cell lines, Siming noticed that they kept dying over a period of time, and then discovered that this cell death was linked to mitochondrial damage," says Dr. Kulkarni, who is also an Assistant Professor of Medicine at Harvard Medical School.

When Liu genetically modified these cells to restore the insulin receptor, he could fix most of the defects.

He tracked down the damage to a molecular complex on the mitochondrial surface that includes two key proteins. One is glucokinase, an enzyme that is key in metabolizing glucose. The other is Bcl-2-associated death promoter (BAD), a protein that is central to a pathway toward cell death.

Liu then examined beta cells from humans with type 2 diabetes and discovered that this mechanism also was at work there.

While researchers had known about the existence of the glucokinase/BAD complex, this was the first study to implicate it in the death of beta cells when the insulin signaling pathway breaks down, and to show that this mechanism also is triggered in humans with type 2 diabetes. Scientists elsewhere recently isolated a similar effect in hepatocytes, cells that make up the liver.

Following up on the discovery in beta cells, "we will try to figure out whether the proteins we isolated in the complex can be therapeutic targets," says Kulkarni. "Right now, no drugs are specifically targeted to prevent this kind of cell death, which can affect just about anyone with type 2 diabetes."

"Mitochondrial function is a very fundamental aspect of how beta cells produce insulin, and this research shows its direct relation with insulin signaling," notes co-author E. Dale Abel, M.D., Ph.D., Chief of the Division of Endocrinology and Metabolism at the University of Utah School of Medicine in Salt Lake City.

Other contributors include Terumasa Okada, Anke Assmann and Chong Wee Liew of Joslin; Jamie Soto and Heiko Bugger of the University of Utah School of Medicine; and Orian S. Shirihai of the Boston University School of Medicine. The research was funded by the National Institutes of Health.

Joslin Diabetes Center is the world's preeminent diabetes research and clinical care organization. Joslin is dedicated to ensuring people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure for the disease. Founded in 1898 by Elliott P. Joslin, M.D., Joslin is an independent nonprofit institution affiliated with Harvard Medical School. For more information about Joslin, visit www.joslin.org or call 1-800-JOSLIN-1.

Eric Bender | Newswise Science News
Further information:
http://www.joslin.harvard.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>