Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twoards diciphering chromosomal chaos in (ER+ ) breast cancer

05.08.2014

Most cancer cells exhibit gross chromosomal aberrations, for instance, gains or losses of whole chromosomes or parts of chromosomes.

This striking feature of many cancers is called aneuploidy and is often accompanied by chromosomal instability (CIN), an increased rate of gain and loss of chromosomes or chromosome fractions. Aneuploidy in cancer cells was first observed 100 years ago by the German biologist Theodor Bovery.

To this day, scientists do not fully understand how cancer cells can cope with such a seemingly chaotic disposition, sometimes even enhancing their proliferation potential.

Increased levels of CIN worsens the prognosis in Estrogen-receptor-positive (or ER+) breast cancer, which comprises about 75% of all breast cancers. This conundrum motivated two teams lead by the Biomathematician Maik Kschischo (University of Applied Sciences Koblenz, Germany) and the Oncologist Charles Swanton (Cancer Research UK, London) to ask, how CIN modulates the activity of other genes and what the phenotypic consequences are.

The scientists designed a computational workflow to filter out core regulator genes whose DNA copy number in high CIN tumours affects the RNA expression of many other genes. Intriguingly, for two of these core regulator genes, TPX2 and UBE2C, they found their DNA copy number to be highly correlated with gene expression biomarkers used for forecasting clinical outcome and response to chemotherapy. In addition, these genes were also associated with markers for cellular proliferation.

These results shed a new light on two open questions: In recent years, various gene expression signatures were approved and marketed to predict the clinical outcome and the response to chemotherapy for woman suffering from ER+ breast cancer.

These signatures help doctors to decide on the optimal treatment strategies for individual patients. What puzzled scientists was, that these signatures have so few genes in common and that no obvious biological process or function could be identified which explains the prognostic power of these signatures. The teams of Kschischo and Swanton show, that a good part of the signal in these signatures is related to CIN and the CIN core regulators UBE2C and TPX2.

Secondly, these results support the view that CIN and aneuploidy are not just byproducts of the cancerous state, but are essential for the evolutionary processes involved in cancer development. By means of natural selection, cancer cells acquire DNA copy aberrations of core regulator genes which enable adaptation to CIN and aneuploidy and also modulation of their proliferative potential.

We still have no consistent picture about the evolutionary forces involved in cancer development and progression. However, recent progress reported here and by others and future work combining computational analysis of larger and larger data sets with targeted experimentation will help to better understand what really drives cancer.

Innovative therapeutic and diagnostic approaches will greatly profit from taking the heterogeneity and adaptability of cancer cells promoted by CIN and aneuploidy into account.

Reference:
Chromosomal instability selects gene copy number variants encoding core regulators of proliferation in ER+ breast cancer.
Cancer Res.
Cancer Res 2014 Jun 26. Epub 2014 Jun 26.
David Endesfelder, Rebecca A. Burrell, Nnennaya Kanu, Nicholas McGranahan, Mike Howell, Peter J Parker, Julian Downward, Charles Swanton, Maik Kschischo

http://cancerres.aacrjournals.org/content/early/2014/06/26/0008-5472.CAN-13-2664...

Melanie Dargel-Feils | idw - Informationsdienst Wissenschaft
Further information:
http://www.hs-koblenz.de

Further reports about: CIN Cancer DNA UBE2C aneuploidy breast chemotherapy chromosomal genes instability proliferation

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>