Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two new species of yellow-shouldered bats endemic to the Neotropics

17.04.2014

Lying forgotten in museum collections two new species of yellow-shouldered bats have been unearthed by scientists at the American Museum of New York and The Field Museum of Natural History and described in the open access journal ZooKeys.

These two new additions to the genus Sturnira are part of a recent discovery of three bats hidden away in collections around the world, the third one still waiting to be officially announced.


This is Sturnira new species No. 3 (not yet described) from eastern Peru, photographed by B. D. Patterson, Field Museum of Natural History.

Credit: B. D. Patterson, Field Museum of Natural History

Up until recently the genus Sturnira was believed to contain only 14 species. In the last years closer morphological and molecular analysis have revealed an unexpected species richness in the genus. Sturnira now includes 22 described species, making it the most speciose genus in the Neotropical bat family Phyllostomidae.

Phyllostomidae, or the New World leaf-nosed bats are exclusively found in the biodiversity rich tropical areas of Central and South America. Both the scientific and common names of these bats refer to their often large, lance-shaped noseleaves. Because these bats use echolocation to orientate in the darkness the "nose-leaf" is thought to serve some role in fine-tuning their call.

All species in the yellow-shouldered genus Sturnira are frugivorous which means they feed largely on fruit. They are endemic to the Neotropics where they inhabit tropical lowland and montane forests. In fact the greatest diversity in the genus occurs on the elevated forested slopes of the Andes where at least 11 species occur.

The two newly described species, Sturnira bakeri and Sturnira burtonlimi occur in western Ecuador and in Costa Rica and Panama. The reason why they went unrecognized in collections is a superficial resemblance with other species in the genus, most of which were described without adequate illustrations to communicate identifying characteristics. Only after an in-depth molecular analysis that included over 100 samples from most of the species of the genus could the new species be identified. "Modern electronic publications like ZooKeys permit extensive and detailed color photography to accompany taxonomic descriptions. Any reader can easily and clearly appreciate the character states we use to distinguish these new taxa" said co-author Bruce Patterson.

###

Original Source:

Velazco PM, Patterson BD (2014) Two new species of yellow-shouldered bats, genus Sturnira Gray, 1842 (Chiroptera, Phyllostomidae) from Costa Rica, Panama and western Ecuador. ZooKeys 402: 43-66. doi: 10.3897/zookeys.402.7228

Paúl M. Velazco | Eurek Alert!
Further information:
http://www.amnh.org

Further reports about: Neotropics Phyllostomidae ZooKeys bats darkness distinguish echolocation endemic forests species tropical

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>