Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Two are better than one – another checkpoint enzyme for flawless cell division


The error-free distribution of genetic material during cell division is important for preventing the development of tumor cells. Prof. Erich Nigg’s research group at the Biozentrum, University of Basel, has uncovered a new important function of the human enzyme Plk1. It plays a significant role in monitoring chromosome segregation. The results published in the journal "Cell Reports" may provide important clues for the treatment of cancer.

Each day, the cells of the human body divide billions of times; this also requires duplication of their genetic information. Errors in cell division can cause tumor formation, and an exact segregation of the DNA (chromosomes) is therefore essential to ensure the health of the whole organism.

Mitotic spindle apparatus preparing for chromosome segregation: an unaligned chromosome activates the checkpoint (green) and thereby prevents premature segregation.

© University of Basel, Biozentrum

Prof. Erich Nigg’s research group at the Biozentrum, University of Basel, has demonstrated that the enzyme Plk1 plays a significant role in monitoring the segregation of chromosomes.

Plk1 has checkpoint function

The segregation of the 23 chromosome pairs of human cells only occurs when all parameters are correct. This is ensured by a surveillance process, a so-called checkpoint. Central to this checkpoint is an inhibitor formed on the chromosomes, called mitotic checkpoint complex (MCC), which prevents cell division until all settings on the mitotic spindle, the chromosome segregation apparatus, are correct.

“Just like the enzyme Mps1, Plk1 also ensures the assembly of the MCC and finally the inhibition of cell division,” says the first author Conrad von Schubert. “Plk1 thus also has a checkpoint function and consequently safeguards chromosome segregation.”

In the past, various functions have been attributed to the enzyme Plk1, including the correct assembly and disassembly of the mitotic spindle. “The newly uncovered checkpoint function of Plk1 had been overlooked, however, since other functions obscured this phenomenon,” explains Conrad von Schubert.

The research team could now demonstrate that Plk1 influences the inhibitor MCC via at least two pathways. In a nutshell, Plk1 supports the enzyme Mps1, whose checkpoint function had already been known for some time. “Plk1 ensures rapid and robust checkpoint activation by acting in a similar way to Mps1, thus reinforcing Mps1 activity,” says Conrad von Schubert.

Plk1 demonstrates evolutionary stability

“While Plk1 and Mps1 cooperate in human cells, Plk1 has prevailed over Mps1 during the evolution of other organisms,” remarks Conrad von Schubert. Because Mps1 has disappeared in the nematode Caenorhabditis elegans, Plk1 has taken over the entire checkpoint function in this organism, as shown by an independent study in the same issue of the journal.

Combined drugs against cancer?

Mps1 is currently being investigated as a possible target for the treatment of cancer. “However, the fact that Plk1 also exhibits checkpoint function during cell division was not known,” says Conrad von Schubert. The new findings suggest that both enzymes should be considered as targets for cancer therapy. “Drugs against Plk1 were developed some time ago and, in light of our findings, it would be interesting to test the potential of a combinatorial treatment.”

Original article

Conrad von Schubert, Fabien Cubizolles, Jasmine M. Bracher, Tale Sliedrecht, Geert J.P.L. Kops, and Erich A. Nigg
Plk1 and Mps1 Cooperatively Regulate the Spindle Assembly Checkpoint in Human Cells
Cell Reports, published online June 25, 2015, doi: 10.1016/j.celrep.2015.06.007

Further Information

Prof. Dr. Erich Nigg, University of Basel, Biozentrum, phone: +41 61 267 16 56, email:

Olivia Poisson | Universität Basel
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>