Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twitter principles of social networking increase family success in nesting birds

24.10.2012
New research carried out by scientists at Universities in Exeter, France and Switzerland reveals for the first time the importance of social networking in producing a successful family.

The study found that, regardless of how big and healthy individual chicks are, what really matters to their chances of surviving and breeding is how siblings in the nest interact with each other, with cooperative families faring best.

Differences in patterns of feeding between mothers and fathers were a key factor in determining the behaviour of their offspring, according to the study published online today in the journal Proceedings of the Royal Society B. Mothers selected weaker, hungrier nestlings while fathers did the opposite, choosing those who were the most competitive.

Dr Nick Royle, from the University of Exeter, was involved in the study, alongside scientists from Universities in Toulouse, Bern and Basel. He said: "Whilst it is well-established that large, strong offspring are generally expected to be more successful than small, less well-nourished offspring, it has not been previously shown that the success of both individuals and families as a whole depends on the structure of social interactions among offspring."

"As any parent knows, parental care can be hard work and there is often a squeeze on the availability of resources in families. This sets the scene for conflicts of interest among family members over how these resources are allocated. Our study shows that the most successful families are those that are best at resolving these conflicts; parents and offspring that are most effective at responding to each other are the most successful."

Scientists from the University of Exeter's Centre for Ecology & Conservation worked with colleagues from the Universities of Basel and Bern in Switzerland and the French Université Paul Sabatier alongside French scientific research organisation CNRS. It was funded by the Natural Environment Research Council and the Swiss National Science Foundation.

63 broods of begging great tits breeding in nest boxes in woods around Bern in Switzerland were filmed when the nestlings were 10 days old, when both parents feed the young using different methods of selecting which nestlings receive food. The researchers examined the network of social interaction between the siblings, and then monitored the parents and their offspring to see whether they survived and went on to breed the following year.

Great tit mothers prefer to feed hungrier, smaller nestlings whereas fathers choose stronger, larger nestlings to feed. So in families where mothers provide most of the food, the young are more 'gregarious'. They moved around more and interacted more strongly with one another as the hungrier nestlings tried to move closer to their mothers to be fed. In broods where fathers fed more than mothers, nestlings moved around much less because the more competitive offspring took up the best positions near him.

Small and medium-sized broods fared better when the mother was the main feeder, whilst larger broods were more successful when the father provided most of the feeds. This could be because of constraints on space in larger families, making it harder for chicks to move around and jostle for position and easier to respond to fathers, with their simpler feeding rules, not mothers.

Dr Nick Royle concluded: "Users of Twitter will know that the more interactions they have, the more successful their profile is likely to be, and it's similar for nesting great tits; at least at nests where mothers provide most of the feeds. When fathers do most of the work offspring are much less gregarious. For young great tits social networking is related to the amount of physical contact each nestling has with their siblings, not the amount of tweeting they do. But using our social networks measure enabled us to demonstrate a novel link between how family members interact with one another and the success of those families."

"Our approach is not just applicable to social interactions in birds, however, or just for families. It could also be applied to understanding what patterns of social organisation best determine success between competing groups of humans, such as in business or team sports."

Louise Vennells | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>