Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twisting in the right direction

12.04.2010
Spontaneous rotating movements cause growing nerve fibers to turn to the right

During neural development, immature nerve cells extend axons and dendrites toward their targets then form connections with other cells. At the tip of these extending fibers is the growth cone, a structure with finger-like protrusions called filopodia.

As the growth cone moves like an amoeba through the environment, the filopodia detect chemical guidance cues that steer it in the right direction. These processes are dependent on rearrangements of the actin cytoskeleton, a protein scaffold inside the cell.

Now, a team of researchers led by Hiroyuki Kamiguchi of the RIKEN Brain Science Institute has shown that nerve fibers turn clockwise in the absence of external clues, when growing on flat two-dimensional surfaces, because the filopodia rotate of their own accord.

The researchers first confirmed that nerve fibers from the hippocampus of embryonic rats turn rightwards when grown on a two-dimensional substrate, but grow straight when embedded in a three-dimensional gel. Addition of the fungal toxin cytochalasin D, which stops elongation of actin filaments, prevented the turning of fibers growing on a flat surface, showing that the turning is dependent on the cytoskeleton.

Hypothesizing that filopodia rotate autonomously, the researchers developed a new technique to directly observe the movements in three dimensions. They embedded hippocampal neurons in a gel, so the nerve fibers grew vertically towards the lens of an upright microscope. This revealed that individual filopodia tended to rotate counter-clockwise. This rotation generates a leftward force on the surface, causing the growth cone to turn to the right.

The researchers then tested whether or not this turning is powered by myosins, the motor proteins responsible for actin-based cellular movements. They transfected hippocampal neurons with three different full-length myosins (Va, Vb and Vc), as well as shortened forms of them that prevent endogenous myosin molecules from binding actin filaments. All were fused to, or co-expressed with, a fluorescent protein to allow easy visualization.

As expected, filopodial rotation was blocked in neurons expressing the shortened myosins, but could be rescued by transfecting the cells with myosins Va and Vb, but not myosin Vc. The rightwards rotation was also observed in neurons from the cerebral cortex, thalamus and cerebellum, suggesting that this is a general mechanism.

Commenting on the findings, Kamiguchi says that: “Rotating filopodia would probe a larger volume of the environment and contribute to the precise perception of cues by the growth cone.”Alternatively, the rotations could promote nerve bundle formation, by enabling new fibers to twine around older ones.

The corresponding author for this highlight is based at the Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute

Journal information

1. Tamada, A., Kawase, S., Murakami, F., & Kamiguchi, H. Autonomous right-screw rotation of growth cone filopodia drives neurite turning. Journal of Cell Biology published online 1 February 2010 (doi:10.1083/jcb.200906043).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6232
http://www.researchsea.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>