Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twisting in the right direction

12.04.2010
Spontaneous rotating movements cause growing nerve fibers to turn to the right

During neural development, immature nerve cells extend axons and dendrites toward their targets then form connections with other cells. At the tip of these extending fibers is the growth cone, a structure with finger-like protrusions called filopodia.

As the growth cone moves like an amoeba through the environment, the filopodia detect chemical guidance cues that steer it in the right direction. These processes are dependent on rearrangements of the actin cytoskeleton, a protein scaffold inside the cell.

Now, a team of researchers led by Hiroyuki Kamiguchi of the RIKEN Brain Science Institute has shown that nerve fibers turn clockwise in the absence of external clues, when growing on flat two-dimensional surfaces, because the filopodia rotate of their own accord.

The researchers first confirmed that nerve fibers from the hippocampus of embryonic rats turn rightwards when grown on a two-dimensional substrate, but grow straight when embedded in a three-dimensional gel. Addition of the fungal toxin cytochalasin D, which stops elongation of actin filaments, prevented the turning of fibers growing on a flat surface, showing that the turning is dependent on the cytoskeleton.

Hypothesizing that filopodia rotate autonomously, the researchers developed a new technique to directly observe the movements in three dimensions. They embedded hippocampal neurons in a gel, so the nerve fibers grew vertically towards the lens of an upright microscope. This revealed that individual filopodia tended to rotate counter-clockwise. This rotation generates a leftward force on the surface, causing the growth cone to turn to the right.

The researchers then tested whether or not this turning is powered by myosins, the motor proteins responsible for actin-based cellular movements. They transfected hippocampal neurons with three different full-length myosins (Va, Vb and Vc), as well as shortened forms of them that prevent endogenous myosin molecules from binding actin filaments. All were fused to, or co-expressed with, a fluorescent protein to allow easy visualization.

As expected, filopodial rotation was blocked in neurons expressing the shortened myosins, but could be rescued by transfecting the cells with myosins Va and Vb, but not myosin Vc. The rightwards rotation was also observed in neurons from the cerebral cortex, thalamus and cerebellum, suggesting that this is a general mechanism.

Commenting on the findings, Kamiguchi says that: “Rotating filopodia would probe a larger volume of the environment and contribute to the precise perception of cues by the growth cone.”Alternatively, the rotations could promote nerve bundle formation, by enabling new fibers to twine around older ones.

The corresponding author for this highlight is based at the Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute

Journal information

1. Tamada, A., Kawase, S., Murakami, F., & Kamiguchi, H. Autonomous right-screw rotation of growth cone filopodia drives neurite turning. Journal of Cell Biology published online 1 February 2010 (doi:10.1083/jcb.200906043).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6232
http://www.researchsea.com

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>