Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twisted switches

24.01.2011
Helical molecules that contract reversibly when oxidized pave the way to new single-molecule electrochemical switches

The degree of twisting of natural helical structures, such as the DNA double-helix, plays an essential role in many important biological functions. Because of their twisted architecture, artificial helices can facilitate the separation and the synthesis of chiral compounds—asymmetric molecules that cannot be superimposed with their mirror image.

New, small spring-like polymer chains, or oligomers, from organic compounds called o-phenylenes have been created by Eisuke Ohta, Takanori Fukushima, Takuzo Aida and colleagues at RIKEN Advanced Science Institute in Wako [1]. These oligomers consist of benzene rings that connect to each other at a sharp angle, leading to their helical structure. The team’s oligomers can change shape and become more rigid when subjected to an electrochemical signal (Fig. 1). They could soon serve as single-molecule machines for application in molecular computers.

Many researchers have investigated molecules that alter their features such as color, luminescence and mode of aggregation when exposed to external stimuli. However, the stimuli-induced change in rigidity demonstrated by the RIKEN team is unprecedented and may open the door to new types of molecular switches.

The researchers synthesized the o-phenylene oligomers using an iterative approach, which allowed them to gradually incorporate electrochemically sensitive units to the oligomer’s backbone.

Ohta explains that while trying to generate the longest o-phenylene oligomers ever synthesized, they noticed that the oligomers possessed highly condensed electron clouds and exhibited a significant reversible difference in rigidity upon removal of one electron during oxidation reactions.

The helical configuration easily causes cyclization—the formation of non-helical structures— which makes the synthesis and investigation of open oligomer chains difficult. The researchers overcame this hurdle by replacing hydrogen atoms positioned at the extremities of the oligomers with so-called ‘nitro functional groups’. Moreover, the octamer, which consists of eight o-phenylene units, was essential for extending the helices while preventing the cyclization, providing long oligomers of up to 48 o-phenylenes.

While purifying their products, the researchers discovered that the nitro-bearing octamer underwent a ‘chiral symmetry-breaking process’, which produced crystals that contained helices with either a left- or right-handed twist. Furthermore, the helices rapidly switched handedness in solution. However, during oxidation these structures contracted, which slowed the switching process between the two chiral states, enhancing their lifetime. These long-lived states resemble 0 and 1 in binary code, making them attractive for optical memory storage.

The researchers are currently examining the chemical and physical properties of these oligomers, which remain unexplored to date. “We want to unveil these properties now,” says Ohta.

The corresponding author for this highlight is based at the Functional Soft Matter Research Group, RIKEN Advanced Science Institute.

Journal information

[1] Ohta, E., Sato, H., Ando, S., Kosaka, A., Fukushima, T., Hashizume, D., Yamasaki, M., Hasegawa, K., Muraoka, A., Ushiyama, H., Yamashita, K. & Aida, T. Redox-responsive molecular helices with highly condensed ð-clouds. Nature Chemistry 3, 68–73 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>