Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New twist on ex ovo culture in bird

19.01.2011
Researchers from the RIKEN Center for Developmental Biology have managed to sustain the growth of chicken embryos outside the egg.

Birds, such as the chicken, provide an excellent model for the study of many developmental processes, and remain one of the most commonly studied species in classical embryology.

The earliest stages of avian embryonic development are not amenable, however, to manipulation within the egg, necessitating methods for embryo culture. A number of techniques for sustaining the growth of chicken embryos ex ovo have been developed, but are limited by cumbersome set-up and relatively short survival times. Methodological advances might therefore expand the utility of ex ovo approaches and enable studies of later occurring developmental phenomena.

Hiroki Nagai and colleagues in the Laboratory for Early Embryogenesis (Guojun Sheng, Team Leader) have done just that with a new twist on ex ovo chick embryo culture, which they have christened the modified Cornish pasty (MC) method, as it is based on a previous technique that involves folding the explanted embryo in two, similar to the preparation of the well-known British pastry. The new method, described in the journal Genesis, is simpler to perform than its predecessors and sustains embryos to later stages of development.

The protocol involves removing the embryo from the egg during the primitive streak phase of development, between stages 3 and 4 on the Hamburger- Hamilton (HH) scale, folding it along an axis parallel to the primitive streak so that it takes on a half-moon shape, and transferring it to culture medium. Interestingly, within 24 hours most of the embryos “inflate,” apparently due to active transport of fluid, and rise to the surface of the medium. This fluid transport is important, as it maintains epiblast tension, which is crucial for early development. The majority of embryos maintained under these conditions grew at normal rates for the first day of culture, but later slowed slightly relative to normal development.

Importantly, about half of all MC cultured embryos survived with normal morphology until HH18, an advance over previous methods, which could only sustain growth until HH13-15. This survival gain is significant in that a number of features of vascular, head, and limb formation only begin to appear at around stage 18. In a number of the MC embryos, growth of the head region continued beyond HH18, although limb development was arrested, meaning that the new method might prove useful in ex ovo studies of even later stages of head development.

To confirm that their new method could be used in complement with other manipulations, Nagai et al. tested several embryological techniques in the folded explants. They found that embryos electroporated with GFP grew normally and were stained as expected with fluorescent signals. They next tried a trickier experiment, known as parabiosis, in which a pair of embryos is co-cultured in close contact with each other, resulting in twin embryos with shared blood circulation. Using a slightly modified version of their new method, they found that they could generate parabiotic pairs of chicks, quails and even combinatorial parabiosis involving a chick-quail pairing. Such experimental systems are useful in the study of blood development.

“The chick is a wonderful model organism for developmental biology studies, but the modified Cornish pasty culture, or the dumpling culture as I like to call it, shows that we still don’t understand the embryo well, as no one would have predicted that twinning and parabiosis can be created this way,” says Sheng. “Our next goal is to use this technique to test some of the hypotheses regarding the origin of definitive hematopoietic stem cells. “

Contact:
Douglas Sipp : sipp(at)cdb.riken.jp
TEL : +81-78-306-3043
RIKEN CDB, Office for Science Communications and International Affairs

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>