Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New twist on ex ovo culture in bird

19.01.2011
Researchers from the RIKEN Center for Developmental Biology have managed to sustain the growth of chicken embryos outside the egg.

Birds, such as the chicken, provide an excellent model for the study of many developmental processes, and remain one of the most commonly studied species in classical embryology.

The earliest stages of avian embryonic development are not amenable, however, to manipulation within the egg, necessitating methods for embryo culture. A number of techniques for sustaining the growth of chicken embryos ex ovo have been developed, but are limited by cumbersome set-up and relatively short survival times. Methodological advances might therefore expand the utility of ex ovo approaches and enable studies of later occurring developmental phenomena.

Hiroki Nagai and colleagues in the Laboratory for Early Embryogenesis (Guojun Sheng, Team Leader) have done just that with a new twist on ex ovo chick embryo culture, which they have christened the modified Cornish pasty (MC) method, as it is based on a previous technique that involves folding the explanted embryo in two, similar to the preparation of the well-known British pastry. The new method, described in the journal Genesis, is simpler to perform than its predecessors and sustains embryos to later stages of development.

The protocol involves removing the embryo from the egg during the primitive streak phase of development, between stages 3 and 4 on the Hamburger- Hamilton (HH) scale, folding it along an axis parallel to the primitive streak so that it takes on a half-moon shape, and transferring it to culture medium. Interestingly, within 24 hours most of the embryos “inflate,” apparently due to active transport of fluid, and rise to the surface of the medium. This fluid transport is important, as it maintains epiblast tension, which is crucial for early development. The majority of embryos maintained under these conditions grew at normal rates for the first day of culture, but later slowed slightly relative to normal development.

Importantly, about half of all MC cultured embryos survived with normal morphology until HH18, an advance over previous methods, which could only sustain growth until HH13-15. This survival gain is significant in that a number of features of vascular, head, and limb formation only begin to appear at around stage 18. In a number of the MC embryos, growth of the head region continued beyond HH18, although limb development was arrested, meaning that the new method might prove useful in ex ovo studies of even later stages of head development.

To confirm that their new method could be used in complement with other manipulations, Nagai et al. tested several embryological techniques in the folded explants. They found that embryos electroporated with GFP grew normally and were stained as expected with fluorescent signals. They next tried a trickier experiment, known as parabiosis, in which a pair of embryos is co-cultured in close contact with each other, resulting in twin embryos with shared blood circulation. Using a slightly modified version of their new method, they found that they could generate parabiotic pairs of chicks, quails and even combinatorial parabiosis involving a chick-quail pairing. Such experimental systems are useful in the study of blood development.

“The chick is a wonderful model organism for developmental biology studies, but the modified Cornish pasty culture, or the dumpling culture as I like to call it, shows that we still don’t understand the embryo well, as no one would have predicted that twinning and parabiosis can be created this way,” says Sheng. “Our next goal is to use this technique to test some of the hypotheses regarding the origin of definitive hematopoietic stem cells. “

Contact:
Douglas Sipp : sipp(at)cdb.riken.jp
TEL : +81-78-306-3043
RIKEN CDB, Office for Science Communications and International Affairs

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>