Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New twist on ex ovo culture in bird

19.01.2011
Researchers from the RIKEN Center for Developmental Biology have managed to sustain the growth of chicken embryos outside the egg.

Birds, such as the chicken, provide an excellent model for the study of many developmental processes, and remain one of the most commonly studied species in classical embryology.

The earliest stages of avian embryonic development are not amenable, however, to manipulation within the egg, necessitating methods for embryo culture. A number of techniques for sustaining the growth of chicken embryos ex ovo have been developed, but are limited by cumbersome set-up and relatively short survival times. Methodological advances might therefore expand the utility of ex ovo approaches and enable studies of later occurring developmental phenomena.

Hiroki Nagai and colleagues in the Laboratory for Early Embryogenesis (Guojun Sheng, Team Leader) have done just that with a new twist on ex ovo chick embryo culture, which they have christened the modified Cornish pasty (MC) method, as it is based on a previous technique that involves folding the explanted embryo in two, similar to the preparation of the well-known British pastry. The new method, described in the journal Genesis, is simpler to perform than its predecessors and sustains embryos to later stages of development.

The protocol involves removing the embryo from the egg during the primitive streak phase of development, between stages 3 and 4 on the Hamburger- Hamilton (HH) scale, folding it along an axis parallel to the primitive streak so that it takes on a half-moon shape, and transferring it to culture medium. Interestingly, within 24 hours most of the embryos “inflate,” apparently due to active transport of fluid, and rise to the surface of the medium. This fluid transport is important, as it maintains epiblast tension, which is crucial for early development. The majority of embryos maintained under these conditions grew at normal rates for the first day of culture, but later slowed slightly relative to normal development.

Importantly, about half of all MC cultured embryos survived with normal morphology until HH18, an advance over previous methods, which could only sustain growth until HH13-15. This survival gain is significant in that a number of features of vascular, head, and limb formation only begin to appear at around stage 18. In a number of the MC embryos, growth of the head region continued beyond HH18, although limb development was arrested, meaning that the new method might prove useful in ex ovo studies of even later stages of head development.

To confirm that their new method could be used in complement with other manipulations, Nagai et al. tested several embryological techniques in the folded explants. They found that embryos electroporated with GFP grew normally and were stained as expected with fluorescent signals. They next tried a trickier experiment, known as parabiosis, in which a pair of embryos is co-cultured in close contact with each other, resulting in twin embryos with shared blood circulation. Using a slightly modified version of their new method, they found that they could generate parabiotic pairs of chicks, quails and even combinatorial parabiosis involving a chick-quail pairing. Such experimental systems are useful in the study of blood development.

“The chick is a wonderful model organism for developmental biology studies, but the modified Cornish pasty culture, or the dumpling culture as I like to call it, shows that we still don’t understand the embryo well, as no one would have predicted that twinning and parabiosis can be created this way,” says Sheng. “Our next goal is to use this technique to test some of the hypotheses regarding the origin of definitive hematopoietic stem cells. “

Contact:
Douglas Sipp : sipp(at)cdb.riken.jp
TEL : +81-78-306-3043
RIKEN CDB, Office for Science Communications and International Affairs

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Big data approach to predict protein structure
27.03.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>