Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twist-and-glow molecules aid rapid gas detection

16.01.2012
Fast and sensitive detection and identification of air-borne gases is now possible using a newly developed sensor

In an emergency such as a factory fire, ascertaining which gases are present in the air is critical to preventing or minimizing poisoning. This requires gas sensors that react quickly and provide a visual signal. However, many existing detection systems work for only one gas, or they use a chemical reaction that is too slow to respond in emergency situations.

Now, Takashi Uemura of Kyoto University and colleagues at several other Japanese institutes, including the RIKEN SPring-8 Center, have created a gas sensor that works rapidly, emits a clear fluorescent signal, and detects different gases1. Most importantly, the new sensor can distinguish between gases with similar chemical and physical properties.

Uemura and colleagues’ sensor contains so-called ‘flexible porous coordination polymers’ coupled with fluorescent reporter molecules that change structure, and therefore emit signals, according to different gases present in the air.

“We thought that the incorporation of functional polymers into flexible porous coordination matrices would show unique dynamic properties,” says Uemura. He and his colleagues therefore inserted a fluorescent reporter molecule into the coordination polymer, whereupon the whole combined structure twisted out of shape.

In this normal and twisted state, the fluorescent light from the reporter is quite dim and green. Once gas molecules are introduced, the structure begins to return to its original shape, and the fluorescence returns, brightening as the gas pressure intensifies. For example, the fluorescence changes from green to blue when the molecule adsorbs carbon dioxide.

By this method, the sensor allows regular monitoring of both the type of gas and its concentration in the air. Crucially, the fluorescent response begins within seconds upon interaction with the gas and is complete within minutes, allowing emergency responders to make decisions quickly (Fig. 1).

In addition to these attributes, this is the first such detection system shown to work for gases with almost identical physical properties, the team notes. “Physical properties, such as size, shape, and boiling points, are very similar between carbon dioxide and acetylene, for example, so it is difficult to distinguish between them,” explains Uemura. “Our material has carboxylate sites in the pore, and these sites can bind to acetylene more strongly than carbon dioxide.

“This unique cooperative change of host and guest could allow us to design new advanced materials,” he adds. By investigating different flexible host structures and other ‘guest’ reporter molecules, the researchers believe they could create gas detection systems for a variety of different gases and other applications in the future.

The corresponding author for this highlight is based at the Spatial Order Research Team, RIKEN SPring-8 Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>