Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tweet tweet, cheep cheep… earliest known bird had hearing similar to an emu

14.01.2009
Archaeopteryx lithographica, the oldest known bird could hear just like birds today

The earliest known bird, magpie-sized Archaeopteryx lithographica could hear just the same as a modern emu (Dromaius novaehollandiae), demonstrating that Archaeopteryx was more bird-like rather than reptilian, according to new research published today.

Using innovative modern technology, palaeontologists at the Natural History Museum in London have shown for the first time how the length of the inner ear of birds and reptiles can be used to accurately predict their hearing ability.

Dr Paul Barrett, Natural History Museum palaeontologist, explained ‘In modern living reptiles and birds, we found that the length of the bony canal containing the sensory tissue of the inner ear is strongly related to their hearing ability. We were then able to use these results to predict how extinct birds and reptiles may have heard, and found that Archaeopteryx had an average hearing range of approximately 2,000 Hz. This means it had similar hearing to modern emus, which have some of the most limited hearing ranges of modern birds.’

Previously, researchers have only been able to estimate how prehistoric animals heard sounds by examining the skulls of damaged fossils and relating brain region size to hearing ability, based on comparison with the fossil’s modern counterpart. However, modern computed tomography or CT imaging allowed Dr Barrett and his colleagues to accurately reconstruct the inner ear anatomy of various intact bird and reptile specimens.

‘Hearing ability in living species is relatively easy to measure, but such direct evidence cannot be gained from extinct animals for obvious reasons – we can’t just play sounds to a dinosaur and see how it responds to the noise. This has meant that we have not been able to fully understand how different animals developed hearing during their early evolution, until now that is,’ continued Dr Barrett.

Natural History Museum palaeontologist, Dr Stig Walsh explained ‘By examining the three dimensional CT scans, we were able to see for the first time the real relationship between hearing ability and behaviour in extinct reptiles and birds. The size of the cochlea duct (the bony part of the inner ear, housing the hearing organ) in living birds and reptiles accurately predicts the hearing ranges of these animals. This simple measurement can therefore provide a direct means for determining hearing capabilities and possibly behaviour in their extinct relatives, including Archaeopteryx.’

Natural History Museum palaeontologist, Dr Angela Milner explained ‘This adds yet more information about how bird-like Archaeopteryx was. Our previous research has shown that the part of the ear that controls balance was just like that of modern birds. Now we know that Archaeopteryx had bird-like hearing, too.’

Animals with a long cochlear duct tended to have the best hearing and vocal ability. Modern living bird species are known to possess relatively longer cochlear ducts than living reptiles. A long cochlear duct is also an indicator of an individual’s complex vocal communication, living in groups and even habitat choice. This is true for both mammals and birds.

“Species living in large social groups have more complicated vocal communication which is understandably influenced by an individual’s ability to hear. Species living in a closed environment, such as forests, where visual communication is ineffective often posses more complex vocal abilities, so now we can more accurately predict the habitat types that extinct animals lived in by examining their ability to hear and communicate,” concluded Dr Barrett.

The research received funding from the Natural Environment Research Council (NERC) and the findings are published in the latest issue of the Proceedings of the Royal Society B.

Claire Gilby | alfa
Further information:
http://www.nhm.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>