Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tweet tweet, cheep cheep… earliest known bird had hearing similar to an emu

14.01.2009
Archaeopteryx lithographica, the oldest known bird could hear just like birds today

The earliest known bird, magpie-sized Archaeopteryx lithographica could hear just the same as a modern emu (Dromaius novaehollandiae), demonstrating that Archaeopteryx was more bird-like rather than reptilian, according to new research published today.

Using innovative modern technology, palaeontologists at the Natural History Museum in London have shown for the first time how the length of the inner ear of birds and reptiles can be used to accurately predict their hearing ability.

Dr Paul Barrett, Natural History Museum palaeontologist, explained ‘In modern living reptiles and birds, we found that the length of the bony canal containing the sensory tissue of the inner ear is strongly related to their hearing ability. We were then able to use these results to predict how extinct birds and reptiles may have heard, and found that Archaeopteryx had an average hearing range of approximately 2,000 Hz. This means it had similar hearing to modern emus, which have some of the most limited hearing ranges of modern birds.’

Previously, researchers have only been able to estimate how prehistoric animals heard sounds by examining the skulls of damaged fossils and relating brain region size to hearing ability, based on comparison with the fossil’s modern counterpart. However, modern computed tomography or CT imaging allowed Dr Barrett and his colleagues to accurately reconstruct the inner ear anatomy of various intact bird and reptile specimens.

‘Hearing ability in living species is relatively easy to measure, but such direct evidence cannot be gained from extinct animals for obvious reasons – we can’t just play sounds to a dinosaur and see how it responds to the noise. This has meant that we have not been able to fully understand how different animals developed hearing during their early evolution, until now that is,’ continued Dr Barrett.

Natural History Museum palaeontologist, Dr Stig Walsh explained ‘By examining the three dimensional CT scans, we were able to see for the first time the real relationship between hearing ability and behaviour in extinct reptiles and birds. The size of the cochlea duct (the bony part of the inner ear, housing the hearing organ) in living birds and reptiles accurately predicts the hearing ranges of these animals. This simple measurement can therefore provide a direct means for determining hearing capabilities and possibly behaviour in their extinct relatives, including Archaeopteryx.’

Natural History Museum palaeontologist, Dr Angela Milner explained ‘This adds yet more information about how bird-like Archaeopteryx was. Our previous research has shown that the part of the ear that controls balance was just like that of modern birds. Now we know that Archaeopteryx had bird-like hearing, too.’

Animals with a long cochlear duct tended to have the best hearing and vocal ability. Modern living bird species are known to possess relatively longer cochlear ducts than living reptiles. A long cochlear duct is also an indicator of an individual’s complex vocal communication, living in groups and even habitat choice. This is true for both mammals and birds.

“Species living in large social groups have more complicated vocal communication which is understandably influenced by an individual’s ability to hear. Species living in a closed environment, such as forests, where visual communication is ineffective often posses more complex vocal abilities, so now we can more accurately predict the habitat types that extinct animals lived in by examining their ability to hear and communicate,” concluded Dr Barrett.

The research received funding from the Natural Environment Research Council (NERC) and the findings are published in the latest issue of the Proceedings of the Royal Society B.

Claire Gilby | alfa
Further information:
http://www.nhm.ac.uk

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>