Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tweet tweet, cheep cheep… earliest known bird had hearing similar to an emu

Archaeopteryx lithographica, the oldest known bird could hear just like birds today

The earliest known bird, magpie-sized Archaeopteryx lithographica could hear just the same as a modern emu (Dromaius novaehollandiae), demonstrating that Archaeopteryx was more bird-like rather than reptilian, according to new research published today.

Using innovative modern technology, palaeontologists at the Natural History Museum in London have shown for the first time how the length of the inner ear of birds and reptiles can be used to accurately predict their hearing ability.

Dr Paul Barrett, Natural History Museum palaeontologist, explained ‘In modern living reptiles and birds, we found that the length of the bony canal containing the sensory tissue of the inner ear is strongly related to their hearing ability. We were then able to use these results to predict how extinct birds and reptiles may have heard, and found that Archaeopteryx had an average hearing range of approximately 2,000 Hz. This means it had similar hearing to modern emus, which have some of the most limited hearing ranges of modern birds.’

Previously, researchers have only been able to estimate how prehistoric animals heard sounds by examining the skulls of damaged fossils and relating brain region size to hearing ability, based on comparison with the fossil’s modern counterpart. However, modern computed tomography or CT imaging allowed Dr Barrett and his colleagues to accurately reconstruct the inner ear anatomy of various intact bird and reptile specimens.

‘Hearing ability in living species is relatively easy to measure, but such direct evidence cannot be gained from extinct animals for obvious reasons – we can’t just play sounds to a dinosaur and see how it responds to the noise. This has meant that we have not been able to fully understand how different animals developed hearing during their early evolution, until now that is,’ continued Dr Barrett.

Natural History Museum palaeontologist, Dr Stig Walsh explained ‘By examining the three dimensional CT scans, we were able to see for the first time the real relationship between hearing ability and behaviour in extinct reptiles and birds. The size of the cochlea duct (the bony part of the inner ear, housing the hearing organ) in living birds and reptiles accurately predicts the hearing ranges of these animals. This simple measurement can therefore provide a direct means for determining hearing capabilities and possibly behaviour in their extinct relatives, including Archaeopteryx.’

Natural History Museum palaeontologist, Dr Angela Milner explained ‘This adds yet more information about how bird-like Archaeopteryx was. Our previous research has shown that the part of the ear that controls balance was just like that of modern birds. Now we know that Archaeopteryx had bird-like hearing, too.’

Animals with a long cochlear duct tended to have the best hearing and vocal ability. Modern living bird species are known to possess relatively longer cochlear ducts than living reptiles. A long cochlear duct is also an indicator of an individual’s complex vocal communication, living in groups and even habitat choice. This is true for both mammals and birds.

“Species living in large social groups have more complicated vocal communication which is understandably influenced by an individual’s ability to hear. Species living in a closed environment, such as forests, where visual communication is ineffective often posses more complex vocal abilities, so now we can more accurately predict the habitat types that extinct animals lived in by examining their ability to hear and communicate,” concluded Dr Barrett.

The research received funding from the Natural Environment Research Council (NERC) and the findings are published in the latest issue of the Proceedings of the Royal Society B.

Claire Gilby | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>