Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tweet tweet, cheep cheep… earliest known bird had hearing similar to an emu

14.01.2009
Archaeopteryx lithographica, the oldest known bird could hear just like birds today

The earliest known bird, magpie-sized Archaeopteryx lithographica could hear just the same as a modern emu (Dromaius novaehollandiae), demonstrating that Archaeopteryx was more bird-like rather than reptilian, according to new research published today.

Using innovative modern technology, palaeontologists at the Natural History Museum in London have shown for the first time how the length of the inner ear of birds and reptiles can be used to accurately predict their hearing ability.

Dr Paul Barrett, Natural History Museum palaeontologist, explained ‘In modern living reptiles and birds, we found that the length of the bony canal containing the sensory tissue of the inner ear is strongly related to their hearing ability. We were then able to use these results to predict how extinct birds and reptiles may have heard, and found that Archaeopteryx had an average hearing range of approximately 2,000 Hz. This means it had similar hearing to modern emus, which have some of the most limited hearing ranges of modern birds.’

Previously, researchers have only been able to estimate how prehistoric animals heard sounds by examining the skulls of damaged fossils and relating brain region size to hearing ability, based on comparison with the fossil’s modern counterpart. However, modern computed tomography or CT imaging allowed Dr Barrett and his colleagues to accurately reconstruct the inner ear anatomy of various intact bird and reptile specimens.

‘Hearing ability in living species is relatively easy to measure, but such direct evidence cannot be gained from extinct animals for obvious reasons – we can’t just play sounds to a dinosaur and see how it responds to the noise. This has meant that we have not been able to fully understand how different animals developed hearing during their early evolution, until now that is,’ continued Dr Barrett.

Natural History Museum palaeontologist, Dr Stig Walsh explained ‘By examining the three dimensional CT scans, we were able to see for the first time the real relationship between hearing ability and behaviour in extinct reptiles and birds. The size of the cochlea duct (the bony part of the inner ear, housing the hearing organ) in living birds and reptiles accurately predicts the hearing ranges of these animals. This simple measurement can therefore provide a direct means for determining hearing capabilities and possibly behaviour in their extinct relatives, including Archaeopteryx.’

Natural History Museum palaeontologist, Dr Angela Milner explained ‘This adds yet more information about how bird-like Archaeopteryx was. Our previous research has shown that the part of the ear that controls balance was just like that of modern birds. Now we know that Archaeopteryx had bird-like hearing, too.’

Animals with a long cochlear duct tended to have the best hearing and vocal ability. Modern living bird species are known to possess relatively longer cochlear ducts than living reptiles. A long cochlear duct is also an indicator of an individual’s complex vocal communication, living in groups and even habitat choice. This is true for both mammals and birds.

“Species living in large social groups have more complicated vocal communication which is understandably influenced by an individual’s ability to hear. Species living in a closed environment, such as forests, where visual communication is ineffective often posses more complex vocal abilities, so now we can more accurately predict the habitat types that extinct animals lived in by examining their ability to hear and communicate,” concluded Dr Barrett.

The research received funding from the Natural Environment Research Council (NERC) and the findings are published in the latest issue of the Proceedings of the Royal Society B.

Claire Gilby | alfa
Further information:
http://www.nhm.ac.uk

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>