Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Turtles use muscle power to breathe due to rigid shell


Turtle shells are unique in the animal kingdom. In order to be able to breathe in this inflexible casing, tortoises have a muscle sling which is attached to the shell to ventilate the lung.

A team of researchers including paleontologist Torsten Scheyer from the University of Zurich can now reveal that the turtle's ancestor Eunotosaurus africanus already breathed with the aid of such a sling – even though it did not yet have a solid shell. The muscle sling was thus the anatomical prerequisite for the development of the rigid turtle shell.

The present-day extinct ancestors of turtles had a flexible ribcage and breathed, like us, by alternately expanding and contracting the lungs and thorax. The development of a solid shell on the back and belly, however, rendered this kind of respiratory process impossible.

Today’s turtles breathe with the aid of a muscle sling attached to the shell, which contracts and relaxes to aerate the lungs. An international team of researchers from North American, African and European institutes and museums have now discovered the origin of this muscle sling:

in Eunotosaurus africanus, a fossil reptile which lived in South Africa during the Middle Permian around 260 million years ago, as the study just published in Nature Communications reveals.

Instead of a rigid plastron and shell like modern turtles, Eunotosaurus merely had extremely broad, partly overlapping T-shaped ribs. “However, these already heavily restricted the freedom of movement of the ribcage” explains Torsten Scheyer from the Paleontological Institute and Museum of the University of Zurich, who is involved in the study.

Judging by the internal and external bone structures of the ribs, Eunotosaurus evidently only had reduced back muscles, but already possessed a muscle sling that aided respiration. “The small fossil reptile thus provides the explanation as to how the vital adaptation of the breathing apparatus could come about in turtle evolution,” says the UZH paleontologist.

Muscle loop enables shell development

“Eunotosaurus constitutes a morphological link between the body plan of early reptiles and the highly modified body blueprint of the turtles that exist today,” explains Scheyer. The scientists studied the rib plates, so-called costals, of turtle shells and the ribs of various fossil and living vertebrate groups, including mammals, crocodiles and even dinosaurs.

Head of the study Tyler Lyson from the Smithsonian Institution in Washington D.C. and the Denver Museum of Nature and Science, Colorado, adds that, “Based on what we know today, solid shells did not appear in fossil stem turtles until 50 million years after Eunotosaurus.”

The study shows that the steady increase of rigidity of the body wall triggered a separation of the rib and abdominal respiratory muscle functions: The increasing broadening and hardening of the body caused the ribs to become less involved in the respiratory process while the muscles increasingly took over the role. “The ribs became thus free and later completely integrated in the turtle's shell,” says Scheyer.

Lyson, T. R., E. R. Schachner, J. Botha-Brink, T. M. Scheyer, M. Lambertz, G. S. Bever, B. Rubidge, and K. de Queiroz. Origin of the unique ventilatory apparatus of turtles. Nature Communications. November 7, 2014. 5:5211. doi: 10.1038/ncomms6211

Dr. Torsten M. Scheyer
University of Zurich
Paleontological Institute and Museum
8006 Zurich
Tel.: +41 44 634 23 22

Bettina Jakob
Media Relations
University of Zurich
Tel.: +41 44 634 44 39

Weitere Informationen:

Bettina Jakob | Universität Zürich

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>