Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turtles use muscle power to breathe due to rigid shell

07.11.2014

Turtle shells are unique in the animal kingdom. In order to be able to breathe in this inflexible casing, tortoises have a muscle sling which is attached to the shell to ventilate the lung.

A team of researchers including paleontologist Torsten Scheyer from the University of Zurich can now reveal that the turtle's ancestor Eunotosaurus africanus already breathed with the aid of such a sling – even though it did not yet have a solid shell. The muscle sling was thus the anatomical prerequisite for the development of the rigid turtle shell.


The present-day extinct ancestors of turtles had a flexible ribcage and breathed, like us, by alternately expanding and contracting the lungs and thorax. The development of a solid shell on the back and belly, however, rendered this kind of respiratory process impossible.

Today’s turtles breathe with the aid of a muscle sling attached to the shell, which contracts and relaxes to aerate the lungs. An international team of researchers from North American, African and European institutes and museums have now discovered the origin of this muscle sling:

in Eunotosaurus africanus, a fossil reptile which lived in South Africa during the Middle Permian around 260 million years ago, as the study just published in Nature Communications reveals.

Instead of a rigid plastron and shell like modern turtles, Eunotosaurus merely had extremely broad, partly overlapping T-shaped ribs. “However, these already heavily restricted the freedom of movement of the ribcage” explains Torsten Scheyer from the Paleontological Institute and Museum of the University of Zurich, who is involved in the study.

Judging by the internal and external bone structures of the ribs, Eunotosaurus evidently only had reduced back muscles, but already possessed a muscle sling that aided respiration. “The small fossil reptile thus provides the explanation as to how the vital adaptation of the breathing apparatus could come about in turtle evolution,” says the UZH paleontologist.

Muscle loop enables shell development

“Eunotosaurus constitutes a morphological link between the body plan of early reptiles and the highly modified body blueprint of the turtles that exist today,” explains Scheyer. The scientists studied the rib plates, so-called costals, of turtle shells and the ribs of various fossil and living vertebrate groups, including mammals, crocodiles and even dinosaurs.

Head of the study Tyler Lyson from the Smithsonian Institution in Washington D.C. and the Denver Museum of Nature and Science, Colorado, adds that, “Based on what we know today, solid shells did not appear in fossil stem turtles until 50 million years after Eunotosaurus.”

The study shows that the steady increase of rigidity of the body wall triggered a separation of the rib and abdominal respiratory muscle functions: The increasing broadening and hardening of the body caused the ribs to become less involved in the respiratory process while the muscles increasingly took over the role. “The ribs became thus free and later completely integrated in the turtle's shell,” says Scheyer.


Literature:
Lyson, T. R., E. R. Schachner, J. Botha-Brink, T. M. Scheyer, M. Lambertz, G. S. Bever, B. Rubidge, and K. de Queiroz. Origin of the unique ventilatory apparatus of turtles. Nature Communications. November 7, 2014. 5:5211. doi: 10.1038/ncomms6211


Contacts:
Dr. Torsten M. Scheyer
University of Zurich
Paleontological Institute and Museum
8006 Zurich
Tel.: +41 44 634 23 22
Email: tscheyer@pim.uzh.ch

Bettina Jakob
Media Relations
University of Zurich
Tel.: +41 44 634 44 39
Email: bettina.jakob@kommunikation.uzh.ch


Weitere Informationen:

http://www.mediadesk.uzh.ch

Bettina Jakob | Universität Zürich

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>