Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Turning Algae Into Energy

As part of a project to create alternative sources of energy, researchers at Sandia National Laboratories are cultivating green algae that holds promise as a new supply of biofuel.

“People have been growing algae for centuries for food supplements for use by man and animals,” said Cecelia Williams, project lead. “It now has the potential to supply our energy needs too.”

Beginning in the 1950s, the Department of Energy recognized algae as a potential feedstock for energy and biofuels and funded the Aquatic Species Program between 1978 and 1996 with $25 million to investigate the production of biofuel from microalgae. DOE terminated the program in the mid-1990s due to low petroleum prices and other priorities. It has only been in the last few years that DOE has once again become interested in algae as a potential source of fuel.

Recently Williams and other Sandia researchers have grown green algae in a 12-by-30-foot greenhouse using a simulated dairy effluent, the nutrient-rich liquid remaining after bacterial digestion of dairy manure. The solids from the digestion of dairy manure can potentially be used to develop fertilizer and feed and the liquid serves as a nutrient source for algae. The algae are typically cultured for several days, followed by harvesting and dewatering, after which the algal oil is extracted. The algae produce lipids, the most useful being neutral oil made up largely of triacyglycerides (TAG) that can be converted to biofuels.

Williams said that growing algae for biofuels eliminates many problems associated with traditional biofuels.

“The current generation of biofuels [starch- and sugar-based ethanol and oil crop-based biodiesel] rely on the use of commodity crops and therefore compete for use of food crops, primarily corn,” she said. “Also, they are very farm-intensive and use a lot of good farming land, fuel and fertilizer inputs and fresh water.”

Algae ponds, on the other hand, can be put on marginal land and grown with non-fresh brackish water produced from energy mineral extraction (petroleum, natural gas, coal-bed methane), or nutrient-loaded wastewater from municipal and agricultural sources. The Southwest has the potential for being a leader in manufacturing this new type of biofuel because “it has lots of barren land that can’t be used for anything else, lots of sunlight and a lot of marginal water,” Sandia researcher Brian Dwyer said.

Sandia scientist Ron Pate noted that Sandia is bringing into play its scientific and engineering expertise to grow and process specific types of algae for biofuels and other useful coproducts. Sandia’s work in this area ties into broader biofuels efforts supported by DOE’s Office of Biomass Program (OBP) that focus on addressing challenges to commercially viable algal biofuels production. This includes participation in the development of the National Algal Biofuels Technology Roadmap Report, which is still in preparation and partnering with others on proposals to establish consortia for algal biofuels and for advanced fungible biofuels with potential funding from OBP. The Algal Biofuels Consortium specifically proposes a broad-based collaboration with Sandia and other national labs, industry and university partners that would pursue research and development of algal biofuels as an affordable, scaleable and sustainable solution that can contribute significantly to meeting the nation’s transportation fuel needs.

Williams anticipates that the Sandia research will have the potential to provide new jobs and economic development to New Mexico, the seventh largest dairy-producing state in the nation. The state’s dairy industry employs more than 5,000 people and has an annual impact of nearly $2.7 billion.

The 340,000 dairy cows in New Mexico produce large quantities of manure and nutrient-rich effluent water that represent a significant waste management problem and regulatory expense to the state’s dairy industry. These and other agri-industrial waste streams represent a valuable and underused feedstock for recycling of energy, biofuels, reusable water and other coproducts. The DOE Algal Biofuels Technology Roadmap currently in draft suggests the use of non-fresh water sources, including agricultural effluent, for algal biomass production. Besides providing a source of non-fresh water and the recycling of needed nutrients, the use of these waste streams in an integrated biorefinery will help to alleviate disposal regulatory requirements on dairies and other confined animal feeding operations in New Mexico and the broader United States.

Sandia’s greenhouse algae project was conceived by Pate and Kyle Hoodenpyle (Ag2Energy) and has been funded by the New Mexico Small Business Association (SBA) and the New Mexico Technology Research Collaborative. The SBA funds Sandia to work with the private-sector partners Ag2Energy and the Pecos Valley Dairy Producers, one of the largest collections of dairy producers in New Mexico. TRC funding lasted one year and the SBA funding is in its final year of a three-year funding cycle.

Future money to research dewatering algae and monitoring the health of algae ponds will come from Sandia’s internal Laboratory Directed Research and Development (LDRD) program and possibly new direct-funded projects from DOE. This research will also allow the greenhouse algae ponds to support other aspects of Sandia’s algae biofuel research portfolio by using the data and information generated from these experiments to evaluate or verify both systems and process models. These models are essential for understanding the economics and risk associated with both the R&D and the scale-up that will be required to make algae an economically viable fuel source for the nation. The ultimate goal is to make algae-derived biofuels competitive with petroleum-based fuels.

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, an autonomous Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, an autonomous Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Darrick Hurst | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>