Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning Algae Into Energy

09.10.2009
As part of a project to create alternative sources of energy, researchers at Sandia National Laboratories are cultivating green algae that holds promise as a new supply of biofuel.

“People have been growing algae for centuries for food supplements for use by man and animals,” said Cecelia Williams, project lead. “It now has the potential to supply our energy needs too.”

Beginning in the 1950s, the Department of Energy recognized algae as a potential feedstock for energy and biofuels and funded the Aquatic Species Program between 1978 and 1996 with $25 million to investigate the production of biofuel from microalgae. DOE terminated the program in the mid-1990s due to low petroleum prices and other priorities. It has only been in the last few years that DOE has once again become interested in algae as a potential source of fuel.

Recently Williams and other Sandia researchers have grown green algae in a 12-by-30-foot greenhouse using a simulated dairy effluent, the nutrient-rich liquid remaining after bacterial digestion of dairy manure. The solids from the digestion of dairy manure can potentially be used to develop fertilizer and feed and the liquid serves as a nutrient source for algae. The algae are typically cultured for several days, followed by harvesting and dewatering, after which the algal oil is extracted. The algae produce lipids, the most useful being neutral oil made up largely of triacyglycerides (TAG) that can be converted to biofuels.

Williams said that growing algae for biofuels eliminates many problems associated with traditional biofuels.

“The current generation of biofuels [starch- and sugar-based ethanol and oil crop-based biodiesel] rely on the use of commodity crops and therefore compete for use of food crops, primarily corn,” she said. “Also, they are very farm-intensive and use a lot of good farming land, fuel and fertilizer inputs and fresh water.”

Algae ponds, on the other hand, can be put on marginal land and grown with non-fresh brackish water produced from energy mineral extraction (petroleum, natural gas, coal-bed methane), or nutrient-loaded wastewater from municipal and agricultural sources. The Southwest has the potential for being a leader in manufacturing this new type of biofuel because “it has lots of barren land that can’t be used for anything else, lots of sunlight and a lot of marginal water,” Sandia researcher Brian Dwyer said.

Sandia scientist Ron Pate noted that Sandia is bringing into play its scientific and engineering expertise to grow and process specific types of algae for biofuels and other useful coproducts. Sandia’s work in this area ties into broader biofuels efforts supported by DOE’s Office of Biomass Program (OBP) that focus on addressing challenges to commercially viable algal biofuels production. This includes participation in the development of the National Algal Biofuels Technology Roadmap Report, which is still in preparation and partnering with others on proposals to establish consortia for algal biofuels and for advanced fungible biofuels with potential funding from OBP. The Algal Biofuels Consortium specifically proposes a broad-based collaboration with Sandia and other national labs, industry and university partners that would pursue research and development of algal biofuels as an affordable, scaleable and sustainable solution that can contribute significantly to meeting the nation’s transportation fuel needs.

Williams anticipates that the Sandia research will have the potential to provide new jobs and economic development to New Mexico, the seventh largest dairy-producing state in the nation. The state’s dairy industry employs more than 5,000 people and has an annual impact of nearly $2.7 billion.

The 340,000 dairy cows in New Mexico produce large quantities of manure and nutrient-rich effluent water that represent a significant waste management problem and regulatory expense to the state’s dairy industry. These and other agri-industrial waste streams represent a valuable and underused feedstock for recycling of energy, biofuels, reusable water and other coproducts. The DOE Algal Biofuels Technology Roadmap currently in draft suggests the use of non-fresh water sources, including agricultural effluent, for algal biomass production. Besides providing a source of non-fresh water and the recycling of needed nutrients, the use of these waste streams in an integrated biorefinery will help to alleviate disposal regulatory requirements on dairies and other confined animal feeding operations in New Mexico and the broader United States.

Sandia’s greenhouse algae project was conceived by Pate and Kyle Hoodenpyle (Ag2Energy) and has been funded by the New Mexico Small Business Association (SBA) and the New Mexico Technology Research Collaborative. The SBA funds Sandia to work with the private-sector partners Ag2Energy and the Pecos Valley Dairy Producers, one of the largest collections of dairy producers in New Mexico. TRC funding lasted one year and the SBA funding is in its final year of a three-year funding cycle.

Future money to research dewatering algae and monitoring the health of algae ponds will come from Sandia’s internal Laboratory Directed Research and Development (LDRD) program and possibly new direct-funded projects from DOE. This research will also allow the greenhouse algae ponds to support other aspects of Sandia’s algae biofuel research portfolio by using the data and information generated from these experiments to evaluate or verify both systems and process models. These models are essential for understanding the economics and risk associated with both the R&D and the scale-up that will be required to make algae an economically viable fuel source for the nation. The ultimate goal is to make algae-derived biofuels competitive with petroleum-based fuels.

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, an autonomous Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, an autonomous Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Darrick Hurst | Newswise Science News
Further information:
http://www.sandia.gov

More articles from Life Sciences:

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

nachricht Accelerated reactions in condensed bio-matter?
19.06.2018 | Heidelberger Institut für Theoretische Studien gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New material for splitting water

19.06.2018 | Physics and Astronomy

Cementless fly ash binder makes concrete 'green'

19.06.2018 | Materials Sciences

Overdosing on Calcium

19.06.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>