Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turn off Per2 – Turn on Healthy Aging

19.04.2016

Due to a loss of functionality in hematopoietic stem cells, immune defects occur during aging. Now, researchers from Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena, Germany, identified gene Per2, whose deletion leads to a stabilization of the number of immune cells in the blood of aged mice and prolongs their lifespan. Results are published online in Journal Nature Cell Biology on April 18, 2016.

There’s no other age group suffering more from infectious diseases than seniors. With growing age, the risk of chronic and cute infections increases. This is due to the diminishing potential of hematopoietic stem cells (HSC) to build blood and immune cells in an appropriate number.


Deletion of gene „Per2“ improves the immune system in old mice and prolongates their lifespan by up to 15%.

[Source: iStock/FLI/Wang et al. 2016]

In particular, HSC’s capability to build lymphocytes is strongly declining, which leads to imbalances in blood cell composition and, thus, to immune defects limiting overall fitness and organismal survival during aging. There is experimental evidence that the accumulation of DNA damage contributes to these aging-induced immune impairments.

Now, a group of researchers lead by Karl Lenhard Rudolph, Scientific Director of Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), identified gene “Per2” as a genetic switch for a better immune system in mice: Per2 gene deletion ameliorates DNA damage responses in HSC leading to stabilization of hematopoietic stem and progenitor cells in aging mice. Hence, mice were less prone to infections and exhibited an elongated lifespan by 15 % without increases in cancer. The results of the study are published online on April 18, 2016, in Journal Nature Cell Biology.

... more about:
»DNA »DNA damage »FLI »damage »immune system »stem cells

“Circadian Clock“-gene Per2 identified by a genetic screen

For their study, in vivo RNA-mediated interference (RNAi) screenings were conducted in mice. 459 putative tumor suppressor genes were targeted to identify genes that limit the self-renewal capacity of HSC in response to DNA damage and aging. This screen identified “period circadian clock 2 (Per2)”-gene – usually one out of various genes regulating sleep-wake cycle – to represent a major factor limiting the maintenance and repopulation capacity of HSC in the context of various types of DNA damage and aging.

Interestingly, Per2 deletion was sufficient to maintain a balanced production of lymphocytes, and hence, to improved immune function in aging mice. A similar effect was also found for DNA damages caused by the shortening of telomeres – the protective caps at our chromosomes’ ends –, a mechanism though to be relevant for human aging.

A further step towards healthy aging

“All in all, these results are very promising, but equally surprising”, K. Lenhard Rudolph summarizes. “We did not expect such a strong connection between switching off a single gene and improving the immune system so clearly”. It will be of future interest to study if the results are transferable to humans. Although humans and mice are genetically quite similar, genes usually regulate myriad of processes in an organism, and possible side-effects of Per2 deletion will have to be elucidated very carefully.

Interestingly, Per2 gene mutations in humans have been associated with advanced sleep disorders leading to advanced tiredness of the patients in the early evening hours. “It is not yet clear whether this mutation in humans would have a benefit such as improved immune functions in aging – it is of great interest for us to further investigate this” Rudolph says.

Publication

Wang J, Morita Y, Han B, Niemann S, Löer B, Rudolph KL.
Per2 induction limits lymphoid-biased haematopoietic stem cells and lymphopoiesis in the context of DNA damage and ageing.
Nature Cell Biology 2016 (e-pub ahead of print), DOI: 10.1038/ncb3342.

Contact

Dr. Evelyn Kästner
Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena
Tel.: + 49 3641-656373, E-Mail: presse@leibniz-fli.de

Background information

The Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) is the first German research organization dedicated to biomedical aging research since 2004. More than 330 members from over 30 nations explore the molecular mechanisms underlying aging processes and age-associated diseases. For more information, please visit http://www.leibniz-fli.de.

The Leibniz Association connects 88 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz Institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services. The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz Institutes collaborate intensively with universities – in the form of “WissenschaftsCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad. They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the institutes’ importance for the country as a whole, they are funded jointly by the Federation and the Länder, employing some 18,100 individuals, including 9,200 researchers. The entire budget of all the institutes is approximately 1.64 billion EUR. See http://www.leibniz-association.eu for more information.

Weitere Informationen:

http://www.leibniz-fli.de - Website Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

Further reports about: DNA DNA damage FLI damage immune system stem cells

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>