Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Turmeric Extract Suppresses Fat Tissue Growth in Rodent Models

Curcumin, the major polyphenol found in turmeric, appears to reduce weight gain in mice and suppress the growth of fat tissue in mice and cell models.

Researchers at the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University (USDA HNRCA) studied mice fed high fat diets supplemented with curcumin and cell cultures incubated with curcumin.

“Weight gain is the result of the growth and expansion of fat tissue, which cannot happen unless new blood vessels form, a process known as angiogenesis.” said senior author Mohsen Meydani, DVM, PhD, director of the Vascular Biology Laboratory at the USDA HNRCA. “Based on our data, curcumin appears to suppress angiogenic activity in the fat tissue of mice fed high fat diets.”

Meydani continued, “It is important to note, we don’t know whether these results can be replicated in humans because, to our knowledge, no studies have been done.”

Turmeric is known for providing flavor to curry. One of its components is curcumin, a type of phytochemical known as a polyphenol. Research findings suggest that phytochemicals, which are the chemicals found in plants, appear to help prevent disease. As the bioactive component of turmeric, curcumin is readily absorbed for use by the body.

Meydani and colleagues studied mice fed high fat diets for 12 weeks. The high fat diet of one group was supplemented with 500 mg of curcumin/ kg diet; the other group consumed no curcumin. Both groups ate the same amount of food, indicating curcumin did not affect appetite, but mice fed the curcumin supplemented diet did not gain as much weight as mice that were not fed curcumin.

“Curcumin appeared to be responsible for total lower body fat in the group that received supplementation,” said Meydani, who is also a professor at the Friedman School of Nutrition Science and Policy at Tufts. “In those mice, we observed a suppression of microvessel density in fat tissue, a sign of less blood vessel growth and thus less expansion of fat. We also found lower blood cholesterol levels and fat in the liver of those mice. In general, angiogenesis and an accumulation of lipids in fat cells contribute to fat tissue growth.”

Writing in the May 2009 issue of The Journal of Nutrition, the authors note similar results in cell cultures. Additionally, curcumin appeared to interfere with expression of two genes which contributed to angiogenesis progression in both cell and rodent models.

“Again, based on this data, we have no way of telling whether curcumin could prevent fat tissue growth in humans.” Meydani said. “The mechanism or mechanisms by which curcumin appears to affect fat tissue must be investigated in a randomized, clinical trial involving humans.”

This study was funded by a grant from the United States Department of Agriculture. Asma Ejaz, a graduate student who worked on this project received a scholarship grant from the Higher Education Commission of Pakistan.

Ejaz A, Wu, D, Kwan P, and Meydani M. Journal of Nutrition. May 2009; 139 (5): 1042-1048. “Curcumin Inhibits Adipogenesis in 3T3-L1 Adipocytes and Angiogenesis and Obesity in C57/BL Mice. 919-925.”

About Tufts University School of Nutrition

The Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy at Tufts University is the only independent school of nutrition in the United States. The school's eight centers, which focus on questions relating to famine, hunger, poverty, and communications, are renowned for the application of scientific research to national and international policy. For two decades, the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University has studied the relationship between good nutrition and good health in aging populations. Tufts research scientists work with federal agencies to establish the USDA Dietary Guidelines, the Dietary Reference Intakes, and other significant public policies.

If you are a member of the media interested in learning more about this topic, or speaking with a faculty member at the Friedman School of Nutrition Science and Policy at Tufts University, or another Tufts health sciences researcher, please contact Andrea Grossman at 617-636-3728 or Christine Fennelly at 617-636-3707.

Andrea Grossman | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>