Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Turbocharged Nanomotors

Silver/gold alloy makes hydrogen peroxide fuelled nanorod move especially fast

Nanorobots that are introduced into the body to eradicate tumor cells or clean out clogged arteries are not just science fiction; they are a realistic vision of the technological possibilities of the not-so-distant future.

Efficient nanomotors will be needed to drive these nanomachines. A team of scientists from University of California, San Diego (USA) and Arizona State University (Tempe, USA) has now developed nanorods that swim extremely fast.

“These nanorods travel about 75 times their own length in one second,” report Joseph Wang and his co-workers in the journal Angewandte Chemie. “We are approaching the speed of the most efficient biological nanomotors, including flagellated bacteria.”

The first simple applications for nanomotors could include rapid transportation of pharmaceutical agents to specific target areas, or the passage of specimen molecules through the tiny channels of diagnostic systems on a microchip.

However, forward motion through a liquid is not as trivial as one would like to think. One method for the construction of nanomotors that can achieve this is the fuel-driven catalytic nanowire. These are tiny nanoscopic rods whose ends are made of two different metals. Unlike macroscopic motors, they do not have a fuel tank; instead they move through a medium that contains the fuel they need.

The “classic” example of such a system is a gold–platinum nanotube that can travel at speeds of 10 to 20 µm per second with hydrogen peroxide as its fuel. Wang and his team have now dramatically accelerated these nanorod motors: they have achieved speeds of over 150 µm per second by replacing the gold portion with an alloy of silver and gold. How does the nanomotor work? The platinum segment catalyzes the splitting of hydrogen peroxide (H2O2) into oxygen (O2) and protons (H+). It absorbs the excess electrons.

These are transferred to the silver/gold segment, where they speed up the reduction reaction of H2O2 and protons to make water. The release of oxygen and water produces a small current, which drives the nanorod through the fluid, platinum side first. “The silver/gold alloy causes the electrons to be transferred more quickly,” explains Wang. “This increases the fuel decomposition rate and the nanorod is accelerated faster.” The speed of the nanorods can be tailored by changing the proportion of silver in the alloy. “Fuel additives or variations of the platinum segment will make these rods even faster,” predicts Wang.

Author: Joseph Wang, University of California, San Diego (USA),

Title: Ultrafast Catalytic Alloy Nanomotors

Angewandte Chemie International Edition, doi: 10.1002/anie.200803841

Joseph Wang | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>