Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tuning natural antimicrobials to improve their effectiveness at battling superbugs

23.08.2011
Ongoing research at the Institute of Food Research, which is strategically funded by BBSRC, is exploring the use of virus-produced proteins that destroy bacterial cells to combat potentially dangerous microbial infections.

Bacteriophages produce endolysin proteins that specifically target certain bacteria, and IFR has been studying one that destroys Clostridium difficile, a common and dangerous source of hospital-acquired infections. New research is showing that it is possible to 'tune' these endolysin properties to increase their effectiveness and aid their development as a new weapon in the battle against superbugs.

Clostridium difficile infection (CDI) is a common and growing problem as a cause of infections, especially in hospitals where the characteristics of the bacteria make it difficult to clear. At the moment, antibiotics are used to treat infections, but C. difficile is adept at acquiring resistance, meaning the number of effective antibiotics is ever decreasing.

This has driven the search for new antimicrobials, and at IFR Melinda Mayer and Arjan Narbad have been focussing on bacteriophage endolysins. These are relatively short proteins produced by viruses that specifically target certain species of bacteria and then break open the cell walls. They had previously isolated an endolysin, CD27L, which is active against C. difficile when applied externally, but does not affect a large range of other bacteria. This is important as any potential treatment must not affect the native gut bacteria in patients, whose gut microbiota may already have been disturbed.

... more about:
»Clostridium »Clostridium difficile »IfR

However, although CD27L works in the laboratory, its activity would probably not be high enough to cope with the vast numbers of C. difficile cells in a growing population in the harsh gut environment to be used as an effective treatment. This prompted the researchers to look more closely at the endolysin.

Endolysins commonly have two domains, one at each end. One domain is thought to be responsible for the specificity of the endolysin, allowing it to bind specifically to wall molecules unique to the bacterial species. This is what was thought to give the endolysin its specific host range. The other catalytic domain attacks the cell wall, causing lysis.

They produced shortened versions of the endolysin containing only one of these domains. The truncated CD27L containing only the catalytic domain showed a much higher activity against the C. difficile cells. Surprisingly, however, the truncated endolysin was still inactive on a range of other bacteria, even though the domain thought to make it specific had been removed.

Working with colleagues at the European Molecular Biology Laboratory (EMBL) in Hamburg, the structure of the catalytic domain was solved and used to design mutants to investigate what controls the specificity and activity of the endolysins. The researchers propose that the catalytic domain contributes to the specificity of the endolysin.

In the case of CD27L, binding to the cell wall is not a critical part of the activity of the endolysin, and from these results seems to reduce the activity. This fundamental science on the mode of action of endolysins establishes that in the development of valuable novel therapeutics it may be more appropriate to use truncated versions of endolysins.

Reference: Structure-based modification of a Clostridium difficile targeting endolysin affects activity and host range Mayer, M.J. et al Journal of Bacteriology doi:10.1128/JB.00439-11

Andrew Chapple | EurekAlert!
Further information:
http://www.nbi.ac.uk

Further reports about: Clostridium Clostridium difficile IfR

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>