Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tuned Enzymes

07.03.2011
Extra guest molecule in an enzyme’s binding pocket enables methane oxidation

Our fossil fuel reserves are limited. When they run out, we will not only be lacking in fuel, but chemical industry will lose its most important feedstock. In contrast, natural gas has barely been used as a raw material.

If it were possible to efficiently convert methane, the main component of natural gas, into chemically useful materials like methanol, we would gain some time to make the transition to alternative sources of raw materials. In the journal Angewandte Chemie, Manfred T. Reetz and a team at the Max Planck Institute for Carbon Research in Mülheim (Germany) have now introduced a new approach for the enzymatic production of methanol from methane. Their secret is the inclusion of an inert guest in the enzyme’s binding pocket in order to make it smaller so that it can effectively bind methane.

Methanol is a useful starting material for many chemical syntheses, and it can also be added to conventional fuels to drive fuel cells. Conventional processes for producing methanol from methane involve detours (synthesis gas), are markedly complex and energy intensive, and require high temperatures and pressures. Nature, on the other hand, has a much more elegant route: the enzyme methane monooxygenase does the job gently and efficiently. Unfortunately this is a very complex enzyme that cannot easily be produced and used in an artificial environment. The cytochrome P450 (CYP) family of enzymes could represent an alternative starting point. The main job of these enzymes is the oxidation of various substances produced by the body or introduced to it. In the reaction, carbon–hydrogen bonds are oxidized to make alcohol groups (–OH). The active component of these enzymes is a heme, an iron–porphyrin complex similar to that in our hemoglobin.

The problem is that the binding pocket of this enzyme is just too big to snugly bind and oxidize small molecules such as methane. Instead of trying to devise complex methods to create a suitable enzyme, Reetz and his co-workers came up with a clever trick: chemically “tuning” a CYP enzyme. The scientists added an additional guest into the binding pocket in order to make it smaller.

The natural substrates for CYP enzymes are fatty acids. As a guest molecule, the researchers chose a compound that resembles a fatty acid, a carbonic acid in which all of the hydrogen atoms in the hydrocarbon chain have been replaced with fluorine atoms. This type of molecule is as water-repellent as the original, but takes up more room. The fluorine atoms make it chemically inert so that it does not participate in any reactions. Like the molecule it is modeled on, this guest is able to bring the iron–heme complex of the enzyme into its catalytically active state (high-spin state). The significantly smaller binding pocket now allows methane to bind effectively so that it can be oxidized to methanol.

Says Reetz: “The road to success is still far for a technical implementation, yet, the concept opens up new perspectives for the development of further reactions, such as the oxidation of other chemical compounds.”

Author: Manfred T. Reetz, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr (Germany), http://www.kofo.mpg.de/manfred-reetz.html

Title: Tuning a P450 Enzyme for Methane Oxidation

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201006587

Manfred T. Reetz | Angewandte Chemie
Further information:
http://www.kofo.mpg.de/manfred-reetz.html
http://pressroom.angewandte.org

Further reports about: Angewandte Chemie CYP enzymes fatty acid fluorine atom natural gas raw material

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>