Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tunable plastic thermometers

15.12.2010
Scientists use an ion beam to produce conductive plastic films for electrical resistance thermometers

Researchers at the Universities of Queensland and New South Wales in Australia have discovered that the ability of a plastic to conduct electricity can be tuned by exposure to an ion beam. Usually plastics conduct electricity so poorly that they are used as the insulation around electrical cables.

However, the team was able to tune the properties of a plastic film using an ion beam so that it conducted electricity like the metals used in the electrical wires themselves – and even passed electric current without resistance, materials which do this are known as superconductors.

To demonstrate a potential application of this low-cost, robust, and flexible material, the team produced electrical resistance thermometers that meet industrial standards. These results are published in the journal ChemPhysChem.

Ion beam techniques are widely used in the microelectronics industry to tailor the conductivity of semiconductors such as silicon. Attempts have been made to adapt this process to plastic films since the 1980s, with limited success. While the use of argon and krypton ion beams leads to a substantial increase in electrical conductivity, the resulting films remain insulators.

The team took an alternative approach, known as ion beam metal-mixing, where a thin film of metal is deposited on a plastic sheet and mixed into the polymer surface using an ion beam. They found that this can produce conducting plastics with metallic or even superconducting properties.

"The process allows us to cover over ten orders of magnitude in electrical resistance and access three distinct regimes of conductivity – insulator, metal and superconductor – with a single material system", says Andrew P. Stephenson, lead author of the paper. This remarkable tunability is achieved by a careful choice of the species used for the ion beam. Stephenson and colleagues start with a polyetheretherketone (PEEK) film coated with a nanoscale layer of tin-antimony alloy, and use a tin ion beam to mix the metal into the plastic surface.

This results in an efficient and stable blending of the metal-polymer surface. Furthermore, the conductivity of the resulting material can be tailored precisely by tuning the initial metal film thickness, beam energy and beam dose.

This level of tunability and control in electrical resistance lends itself naturally to the application of resistance temperature measurement. As a demonstration of this potential application, the team tested their films against an industry standard platinum resistance thermometer, obtaining comparable accuracy. As well as being inexpensive, flexible and easily produced with equipment commonly used in the microelectronics industry, these materials are vastly more tolerant of exposure to oxygen compared to standard semiconducting polymers such as polyhexylthiophene or pentacene. "Combined, these advantages may give ion-beam-processed polymer films a bright future in the on-going development of soft materials for plastic electronics applications –a fusion between current and next-generation technology", the researchers say.

Author: Andrew P. Stephenson, Ben J. Powell, University of Queensland, Brisbane (Australia), http://www.uq.edu.au/

Title: A Tunable Metal-Organic Resistance Thermometer

ChemPhysChem 2011, 12, No. 1, Permalink to the article: http://dx.doi.org/10.1002/cphc.201000762

Andrew P. Stephenson | Wiley-VCH
Further information:
http://www.wiley-vch.de

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>