Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tunable plastic thermometers

15.12.2010
Scientists use an ion beam to produce conductive plastic films for electrical resistance thermometers

Researchers at the Universities of Queensland and New South Wales in Australia have discovered that the ability of a plastic to conduct electricity can be tuned by exposure to an ion beam. Usually plastics conduct electricity so poorly that they are used as the insulation around electrical cables.

However, the team was able to tune the properties of a plastic film using an ion beam so that it conducted electricity like the metals used in the electrical wires themselves – and even passed electric current without resistance, materials which do this are known as superconductors.

To demonstrate a potential application of this low-cost, robust, and flexible material, the team produced electrical resistance thermometers that meet industrial standards. These results are published in the journal ChemPhysChem.

Ion beam techniques are widely used in the microelectronics industry to tailor the conductivity of semiconductors such as silicon. Attempts have been made to adapt this process to plastic films since the 1980s, with limited success. While the use of argon and krypton ion beams leads to a substantial increase in electrical conductivity, the resulting films remain insulators.

The team took an alternative approach, known as ion beam metal-mixing, where a thin film of metal is deposited on a plastic sheet and mixed into the polymer surface using an ion beam. They found that this can produce conducting plastics with metallic or even superconducting properties.

"The process allows us to cover over ten orders of magnitude in electrical resistance and access three distinct regimes of conductivity – insulator, metal and superconductor – with a single material system", says Andrew P. Stephenson, lead author of the paper. This remarkable tunability is achieved by a careful choice of the species used for the ion beam. Stephenson and colleagues start with a polyetheretherketone (PEEK) film coated with a nanoscale layer of tin-antimony alloy, and use a tin ion beam to mix the metal into the plastic surface.

This results in an efficient and stable blending of the metal-polymer surface. Furthermore, the conductivity of the resulting material can be tailored precisely by tuning the initial metal film thickness, beam energy and beam dose.

This level of tunability and control in electrical resistance lends itself naturally to the application of resistance temperature measurement. As a demonstration of this potential application, the team tested their films against an industry standard platinum resistance thermometer, obtaining comparable accuracy. As well as being inexpensive, flexible and easily produced with equipment commonly used in the microelectronics industry, these materials are vastly more tolerant of exposure to oxygen compared to standard semiconducting polymers such as polyhexylthiophene or pentacene. "Combined, these advantages may give ion-beam-processed polymer films a bright future in the on-going development of soft materials for plastic electronics applications –a fusion between current and next-generation technology", the researchers say.

Author: Andrew P. Stephenson, Ben J. Powell, University of Queensland, Brisbane (Australia), http://www.uq.edu.au/

Title: A Tunable Metal-Organic Resistance Thermometer

ChemPhysChem 2011, 12, No. 1, Permalink to the article: http://dx.doi.org/10.1002/cphc.201000762

Andrew P. Stephenson | Wiley-VCH
Further information:
http://www.wiley-vch.de

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>