Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor Suppressor Protein Is a Key Regulator of Immune Response and Balance

20.07.2011
St. Jude Children’s Research Hospital scientists have identified a key immune system regulator, a protein that serves as a gatekeeper in the white blood cells that produce the “troops” to battle specific infections.

Researchers demonstrated the protein, Tsc1, is pivotal for maintaining a balanced immune system and combating infections. Loss of the Tsc1 protein was associated with a reduction in the number of certain immune cells and a weaker immune response. The work appears in the July 17 online edition of the scientific journal Nature Immunology.

Scientists found that Tsc1 works by inhibiting the pathway that launches production of the specialized white blood cells known as effector T cells. Those cells are the backbone of the adaptive immune response, designed to respond, identify and destroy specific bacteria, viruses and other threats.

Working in mice with specially engineered immune systems, scientists showed Tsc1 also keeps cellular activity at a minimum in the white blood cells known as naïve T cells. That process is known as quiescence.

Quiescence has long been recognized as crucial to proper immune function. But until now scientists were unclear how quiescence was established and maintained in naïve T cells. “This study is the first to show that Tsc1 is a primary regulator of T cell quiescence,” said Hongbo Chi, Ph.D., assistant member St. Jude Department of Immunology, and the study’s senior author. The first author is Kai Yang, Ph.D., a postdoctoral fellow in Chi’s laboratory.

“These findings not only advance understanding of the cell biology of the immune system but also have great potential for clinical applications in the future,” Chi said. He speculated that the same process might also be important in regulating immune cells known as memory T cells that help the immune system recognize infectious agents encountered before and mount a rapid immune response.

Tsc1 is best known as a tumor suppressor, helping to prevent cancer development by inhibiting activity of the mTOR protein and the pathway that bears its name. The mTOR pathway plays a key role in cancer, metabolic disease and aging.

Now Chi and his colleagues demonstrated that in the immune system Tsc1 has a unique job. Through inhibition of the mTOR pathway, Tsc1 forces naïve T cells to maintain minimal metabolic and cellular activity. Normally that would only change when naïve T cells are activated and begin producing the more specialized effector T cells to combat a specific new threat.

In this study, scientists showed that loss of the Tsc1 protein predisposed affected T cells to premature activation, resulting in programmed cell death via the cell’s suicide pathway. Consequently, the process depleted the supply of T cells as well as another group of specialized immune cells known as invariant natural killer T cells. The loss also dampened the ability of mice to combat bacterial infections. “We think maintaining T cell quiescence is central to preventing premature cell death and ensuring a productive immune response,” Chi said.

Although more work is needed to understand mTOR regulation of T cell quiescence, this study offers a glimpse into the process. Tsc1 is part of a larger complex known to regulate mTOR activity. The mTOR protein is also a component in two larger complexes, known as mTORC1 and mTORC2. Chi and his colleagues demonstrated that naïve T cell quiescence requires Tsc1 to keep mTORC1 activity at a low level. If Tsc1 is lost or shut down prematurely, mTORC1 activity increases, leading to premature activation of the immune cells, which results in various abnormalities and cell death.

Other authors are Geoffrey Neale, Douglas Green, both of St. Jude; and Weifeng He, formerly of St. Jude.

The research was supported in part by the National Institutes of Health, the Arthritis Foundation, the Lupus Research Institute and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other catastrophic diseases. Ranked one of the best pediatric cancer hospitals in the country, St. Jude is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children. St. Jude has treated children from all 50 states and from around the world, serving as a trusted resource for physicians and researchers. St. Jude has developed research protocols that helped push overall survival rates for childhood cancer from less than 20 percent when the hospital opened to almost 80 percent today. St. Jude is the national coordinating center for the Pediatric Brain Tumor Consortium and the Childhood Cancer Survivor Study. In addition to pediatric cancer research, St. Jude is also a leader in sickle cell disease research and is a globally prominent research center for influenza.

Founded in 1962 by the late entertainer Danny Thomas, St. Jude freely shares its discoveries with scientific and medical communities around the world, publishing more research articles than any other pediatric cancer research center in the United States. St. Jude treats more than 5,700 patients each year and is the only pediatric cancer research center where families never pay for treatment not covered by insurance. St. Jude is financially supported by thousands of individual donors, organizations and corporations without which the hospital’s work would not be possible. For more information, go to www.stjude.org.

St. Jude Public Relations Contacts
Summer Freeman
(desk) 901-595-3061
(cell) 901-297-9861
summer.freeman@stjude.org
Carrie Strehlau
(desk) 901-595-2295
(cell) 901-297-9875
carrie.strehlau@stjude.org

Summer Freeman | Newswise Science News
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>