Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor suppressor acts as oncogene in some cancers

28.10.2010
Researchers at Mayo Clinic in Florida have found that a molecule long believed to be a beneficial tumor suppressor — and thus a potential cancer drug target — appears to act as an oncogene in some lethal brain tumors.

The protein, epithelial cadherin (E-cadherin), is known for its ability to keep cancer cells glued together, preventing them from breaking away and metastasizing. But, based on their findings, published online in PLoS ONE, the scientists suggest E-cadherin can also function as an oncogene in some cancers. An oncogene helps push cancer development and growth.

They say the findings could explain recent, puzzling observations about E-cadherin expression in breast cancer, for example. While loss of E-cadherin is generally considered a harbinger of metastasis, researchers have also found that most breast cancer that has spread retains E-cadherin expression. Ovarian tumors also have been paradoxically found to produce more and more E-cadherin as they grow.

"This surprising finding should compel us all to shift our thinking about E-cadherin," says the study's lead investigator, cancer biologist Panos Z. Anastasiadis, Ph.D. "Up to now, we have all thought that if a tumor loses E-cadherin function, that represents a movement toward metastasis. That makes sense because 50 percent of cancers don't express E-cadherin and they are linked to a worse prognosis.

"But now it appears that E-cadherin expression in a tumor could be responsible for cells growing out of control if the protein is not functioning as it should be."

Dr. Anastasiadis focuses his research on the biological factors involved in cancer metastasis. In this study, he and a research team, which included scientists from Mayo Clinic's campuses in Florida and Minnesota, examined protein expression in glioblastoma cancer cells. Glioblastoma is the most common, as well as the most dangerous, brain cancer.

"Our interest is to understand the pathways that induce glioblastoma to be so invasive," he says. "The problem with this cancer is that the tumors can be very aggressive, and single cancer cells can spread all over the brain."

Among other proteins, the researchers looked at cadherins, of which about 20 are expressed in the brain — more than in any other organ. These are transmembrane proteins that play critical roles in determining how cells bind to each other in a tissue. The researchers expected to find significant amounts of neural cadherin (N-cadherin) in the tumors, but not E-cadherin, which is expressed in epithelial rather that normal brain tissue.

In epithelial tissue, loss of E-cadherin usually represents a switch in cell behavior known as epithelial-mesenchymal transition (EMT). In EMT, cells that had been tightly bound to each other loosen up, due to loss of E-cadherin, and other proteins — including other members of the cadherin superfamily — then promote migration of individual cells away from a cancer cluster. Drugs are being developed that target this EMT switch, says Dr. Anastasiadis.

Given these facts, the researchers say that what they found surprised them. While N-cadherin was expressed in most human brain tumor cell lines — and N-cadherin is potentially oncogenic — some also expressed E-cadherin. They also found those cells that expressed E-cadherin acted more aggressively than brain cancer that did not express the protein. The researchers then validated their findings in animal studies. Finally, they performed an experiment in which they removed E-cadherin expression from glioblastoma cells and found these cells had a reduced ability to move, and grew at a much slower pace.

"E-cadherin expressed in these glioblastomas did not function to keep cells stuck together. Instead, they promoted tumor growth and migration," Dr. Anastasiadis says. "This is the complete opposite of what we have known about E-cadherin. For some reason, in these brain cells, E-cadherin expression is linked to aggressive cell behavior and poor prognosis."

The findings suggest "cadherins, as a whole class of proteins, need to be studied in more detail," he says. "E-cadherin expressed in glioblastoma functioned like an oncogene and it could be doing the same in many breast, ovarian, and other tumors found elsewhere in the body.

"Understanding what causes the switch in E-cadherin function from a tumor suppressor to an oncogene, and how to block it, will be critical," concludes Dr. Anastasiadis. "But the bottom line is that we cannot view E-cadherin simply as a tumor suppressor anymore."

The study was funded by the National Institutes of Health, the Accelerate Brain Cancer Cure Foundation, and a Daniel Foundation training grant. Co-authors from Mayo Clinic's sites in Florida and Minnesota include Laura Lewis-Tuffin, Ph.D., Fausto Rodriquez, M.D., Caterina Giannini, M.D., Ph.D., Bernd Scheithauer, Brian Necela, Ph.D., and Jann Sarkaria, M.D. The authors declare no conflicts of interest.

About Mayo Clinic

For more than 100 years, millions of people from all walks of life have found answers at Mayo Clinic. These patients tell us they leave Mayo Clinic with peace of mind knowing they received care from the world's leading experts. Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. At Mayo Clinic, a team of specialists is assembled to take the time to listen, understand and care for patients' health issues and concerns. These teams draw from more than 3,700 physicians and scientists and 50,100 allied staff that work at Mayo Clinic's campuses in Minnesota, Florida, and Arizona; and community-based providers in more than 70 locations in southern Minnesota, western Wisconsin and northeast Iowa. These locations treat more than half a million people each year. To best serve patients, Mayo Clinic works with many insurance companies, does not require a physician referral in most cases and is an in-network provider for millions of people. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education, visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your general health information.

Kevin Punsky | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>