Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor suppressor acts as oncogene in some cancers

28.10.2010
Researchers at Mayo Clinic in Florida have found that a molecule long believed to be a beneficial tumor suppressor — and thus a potential cancer drug target — appears to act as an oncogene in some lethal brain tumors.

The protein, epithelial cadherin (E-cadherin), is known for its ability to keep cancer cells glued together, preventing them from breaking away and metastasizing. But, based on their findings, published online in PLoS ONE, the scientists suggest E-cadherin can also function as an oncogene in some cancers. An oncogene helps push cancer development and growth.

They say the findings could explain recent, puzzling observations about E-cadherin expression in breast cancer, for example. While loss of E-cadherin is generally considered a harbinger of metastasis, researchers have also found that most breast cancer that has spread retains E-cadherin expression. Ovarian tumors also have been paradoxically found to produce more and more E-cadherin as they grow.

"This surprising finding should compel us all to shift our thinking about E-cadherin," says the study's lead investigator, cancer biologist Panos Z. Anastasiadis, Ph.D. "Up to now, we have all thought that if a tumor loses E-cadherin function, that represents a movement toward metastasis. That makes sense because 50 percent of cancers don't express E-cadherin and they are linked to a worse prognosis.

"But now it appears that E-cadherin expression in a tumor could be responsible for cells growing out of control if the protein is not functioning as it should be."

Dr. Anastasiadis focuses his research on the biological factors involved in cancer metastasis. In this study, he and a research team, which included scientists from Mayo Clinic's campuses in Florida and Minnesota, examined protein expression in glioblastoma cancer cells. Glioblastoma is the most common, as well as the most dangerous, brain cancer.

"Our interest is to understand the pathways that induce glioblastoma to be so invasive," he says. "The problem with this cancer is that the tumors can be very aggressive, and single cancer cells can spread all over the brain."

Among other proteins, the researchers looked at cadherins, of which about 20 are expressed in the brain — more than in any other organ. These are transmembrane proteins that play critical roles in determining how cells bind to each other in a tissue. The researchers expected to find significant amounts of neural cadherin (N-cadherin) in the tumors, but not E-cadherin, which is expressed in epithelial rather that normal brain tissue.

In epithelial tissue, loss of E-cadherin usually represents a switch in cell behavior known as epithelial-mesenchymal transition (EMT). In EMT, cells that had been tightly bound to each other loosen up, due to loss of E-cadherin, and other proteins — including other members of the cadherin superfamily — then promote migration of individual cells away from a cancer cluster. Drugs are being developed that target this EMT switch, says Dr. Anastasiadis.

Given these facts, the researchers say that what they found surprised them. While N-cadherin was expressed in most human brain tumor cell lines — and N-cadherin is potentially oncogenic — some also expressed E-cadherin. They also found those cells that expressed E-cadherin acted more aggressively than brain cancer that did not express the protein. The researchers then validated their findings in animal studies. Finally, they performed an experiment in which they removed E-cadherin expression from glioblastoma cells and found these cells had a reduced ability to move, and grew at a much slower pace.

"E-cadherin expressed in these glioblastomas did not function to keep cells stuck together. Instead, they promoted tumor growth and migration," Dr. Anastasiadis says. "This is the complete opposite of what we have known about E-cadherin. For some reason, in these brain cells, E-cadherin expression is linked to aggressive cell behavior and poor prognosis."

The findings suggest "cadherins, as a whole class of proteins, need to be studied in more detail," he says. "E-cadherin expressed in glioblastoma functioned like an oncogene and it could be doing the same in many breast, ovarian, and other tumors found elsewhere in the body.

"Understanding what causes the switch in E-cadherin function from a tumor suppressor to an oncogene, and how to block it, will be critical," concludes Dr. Anastasiadis. "But the bottom line is that we cannot view E-cadherin simply as a tumor suppressor anymore."

The study was funded by the National Institutes of Health, the Accelerate Brain Cancer Cure Foundation, and a Daniel Foundation training grant. Co-authors from Mayo Clinic's sites in Florida and Minnesota include Laura Lewis-Tuffin, Ph.D., Fausto Rodriquez, M.D., Caterina Giannini, M.D., Ph.D., Bernd Scheithauer, Brian Necela, Ph.D., and Jann Sarkaria, M.D. The authors declare no conflicts of interest.

About Mayo Clinic

For more than 100 years, millions of people from all walks of life have found answers at Mayo Clinic. These patients tell us they leave Mayo Clinic with peace of mind knowing they received care from the world's leading experts. Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. At Mayo Clinic, a team of specialists is assembled to take the time to listen, understand and care for patients' health issues and concerns. These teams draw from more than 3,700 physicians and scientists and 50,100 allied staff that work at Mayo Clinic's campuses in Minnesota, Florida, and Arizona; and community-based providers in more than 70 locations in southern Minnesota, western Wisconsin and northeast Iowa. These locations treat more than half a million people each year. To best serve patients, Mayo Clinic works with many insurance companies, does not require a physician referral in most cases and is an in-network provider for millions of people. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education, visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your general health information.

Kevin Punsky | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>