Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor suppressor acts as oncogene in some cancers

28.10.2010
Researchers at Mayo Clinic in Florida have found that a molecule long believed to be a beneficial tumor suppressor — and thus a potential cancer drug target — appears to act as an oncogene in some lethal brain tumors.

The protein, epithelial cadherin (E-cadherin), is known for its ability to keep cancer cells glued together, preventing them from breaking away and metastasizing. But, based on their findings, published online in PLoS ONE, the scientists suggest E-cadherin can also function as an oncogene in some cancers. An oncogene helps push cancer development and growth.

They say the findings could explain recent, puzzling observations about E-cadherin expression in breast cancer, for example. While loss of E-cadherin is generally considered a harbinger of metastasis, researchers have also found that most breast cancer that has spread retains E-cadherin expression. Ovarian tumors also have been paradoxically found to produce more and more E-cadherin as they grow.

"This surprising finding should compel us all to shift our thinking about E-cadherin," says the study's lead investigator, cancer biologist Panos Z. Anastasiadis, Ph.D. "Up to now, we have all thought that if a tumor loses E-cadherin function, that represents a movement toward metastasis. That makes sense because 50 percent of cancers don't express E-cadherin and they are linked to a worse prognosis.

"But now it appears that E-cadherin expression in a tumor could be responsible for cells growing out of control if the protein is not functioning as it should be."

Dr. Anastasiadis focuses his research on the biological factors involved in cancer metastasis. In this study, he and a research team, which included scientists from Mayo Clinic's campuses in Florida and Minnesota, examined protein expression in glioblastoma cancer cells. Glioblastoma is the most common, as well as the most dangerous, brain cancer.

"Our interest is to understand the pathways that induce glioblastoma to be so invasive," he says. "The problem with this cancer is that the tumors can be very aggressive, and single cancer cells can spread all over the brain."

Among other proteins, the researchers looked at cadherins, of which about 20 are expressed in the brain — more than in any other organ. These are transmembrane proteins that play critical roles in determining how cells bind to each other in a tissue. The researchers expected to find significant amounts of neural cadherin (N-cadherin) in the tumors, but not E-cadherin, which is expressed in epithelial rather that normal brain tissue.

In epithelial tissue, loss of E-cadherin usually represents a switch in cell behavior known as epithelial-mesenchymal transition (EMT). In EMT, cells that had been tightly bound to each other loosen up, due to loss of E-cadherin, and other proteins — including other members of the cadherin superfamily — then promote migration of individual cells away from a cancer cluster. Drugs are being developed that target this EMT switch, says Dr. Anastasiadis.

Given these facts, the researchers say that what they found surprised them. While N-cadherin was expressed in most human brain tumor cell lines — and N-cadherin is potentially oncogenic — some also expressed E-cadherin. They also found those cells that expressed E-cadherin acted more aggressively than brain cancer that did not express the protein. The researchers then validated their findings in animal studies. Finally, they performed an experiment in which they removed E-cadherin expression from glioblastoma cells and found these cells had a reduced ability to move, and grew at a much slower pace.

"E-cadherin expressed in these glioblastomas did not function to keep cells stuck together. Instead, they promoted tumor growth and migration," Dr. Anastasiadis says. "This is the complete opposite of what we have known about E-cadherin. For some reason, in these brain cells, E-cadherin expression is linked to aggressive cell behavior and poor prognosis."

The findings suggest "cadherins, as a whole class of proteins, need to be studied in more detail," he says. "E-cadherin expressed in glioblastoma functioned like an oncogene and it could be doing the same in many breast, ovarian, and other tumors found elsewhere in the body.

"Understanding what causes the switch in E-cadherin function from a tumor suppressor to an oncogene, and how to block it, will be critical," concludes Dr. Anastasiadis. "But the bottom line is that we cannot view E-cadherin simply as a tumor suppressor anymore."

The study was funded by the National Institutes of Health, the Accelerate Brain Cancer Cure Foundation, and a Daniel Foundation training grant. Co-authors from Mayo Clinic's sites in Florida and Minnesota include Laura Lewis-Tuffin, Ph.D., Fausto Rodriquez, M.D., Caterina Giannini, M.D., Ph.D., Bernd Scheithauer, Brian Necela, Ph.D., and Jann Sarkaria, M.D. The authors declare no conflicts of interest.

About Mayo Clinic

For more than 100 years, millions of people from all walks of life have found answers at Mayo Clinic. These patients tell us they leave Mayo Clinic with peace of mind knowing they received care from the world's leading experts. Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. At Mayo Clinic, a team of specialists is assembled to take the time to listen, understand and care for patients' health issues and concerns. These teams draw from more than 3,700 physicians and scientists and 50,100 allied staff that work at Mayo Clinic's campuses in Minnesota, Florida, and Arizona; and community-based providers in more than 70 locations in southern Minnesota, western Wisconsin and northeast Iowa. These locations treat more than half a million people each year. To best serve patients, Mayo Clinic works with many insurance companies, does not require a physician referral in most cases and is an in-network provider for millions of people. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education, visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your general health information.

Kevin Punsky | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>