Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tumor inhibitor for treatment of hereditary breast cancer shows promising results in mouse model

30.10.2008
Researchers of the Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital used the novel inhibitor AZD2281 to target breast cancer, in which the BRCA1-gene plays a role, in a genetically engineered mouse model.

Treatment resulted in tumor regression and a strong increase in survival without signs of toxicity.

The inhibitor, which recently entered trials in human cancer patients, thus seems to have therapeutic potential for BRCA-defective tumors. Sven Rottenberg, Piet Borst and Jos Jonkers publish their results this week in PNAS Online Early Edition.

Resistance

Long-term treatment with AZD2281 in the mouse model did result in the development of drug resistance. This could however be reversed by coadministration of an other type of inhibitor, tariquidar. Furthermore, the researchers studied the effect of combined treatment with AZD2281 and cisplatin or carboplatin. This increased the recurrence-free and overall survival, suggesting that AZD2281 potentiates the effect of these DNA-damaging agents.

Model

The researchers previously developed the mouse model to study BRCA1-associated breast tumors. BRCA1 defects are often observed in so called triple-negative tumors. No targeted therapy exists yet for this type of breast cancer, which account for about 15% of all breast tumors. The researchers now use the mouse model for preclinical evaluation of potential therapeutics that target tumors with BRCA1 defects and that might be useful for treatment of triple-negative cancers.

The results with AZD2281 show that the mouse model is not only useful for the investigation of the efficacy and toxicity of chemical compounds. Also the development, prevention and circumvention of drug resistance can be tested in the model.

Hence, intervention studies in the mouse model may help to predict the basis of resistance to novel therapeutics well in advance of the human experience. Ultimately, this may improve the clinical success rate for novel anticancer drugs.

Frederique Melman | alfa
Further information:
http://www.nki.nl

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

The secret of the soybean: Mainz researchers are investigating oil bodies in soybeans

21.06.2018 | Life Sciences

Scientists print sensors on gummi candy: creating microelectrode arrays on soft materials

21.06.2018 | Power and Electrical Engineering

Proteins with different evolutionary histories now do the same job

21.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>