Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tumor inhibitor for treatment of hereditary breast cancer shows promising results in mouse model

30.10.2008
Researchers of the Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital used the novel inhibitor AZD2281 to target breast cancer, in which the BRCA1-gene plays a role, in a genetically engineered mouse model.

Treatment resulted in tumor regression and a strong increase in survival without signs of toxicity.

The inhibitor, which recently entered trials in human cancer patients, thus seems to have therapeutic potential for BRCA-defective tumors. Sven Rottenberg, Piet Borst and Jos Jonkers publish their results this week in PNAS Online Early Edition.

Resistance

Long-term treatment with AZD2281 in the mouse model did result in the development of drug resistance. This could however be reversed by coadministration of an other type of inhibitor, tariquidar. Furthermore, the researchers studied the effect of combined treatment with AZD2281 and cisplatin or carboplatin. This increased the recurrence-free and overall survival, suggesting that AZD2281 potentiates the effect of these DNA-damaging agents.

Model

The researchers previously developed the mouse model to study BRCA1-associated breast tumors. BRCA1 defects are often observed in so called triple-negative tumors. No targeted therapy exists yet for this type of breast cancer, which account for about 15% of all breast tumors. The researchers now use the mouse model for preclinical evaluation of potential therapeutics that target tumors with BRCA1 defects and that might be useful for treatment of triple-negative cancers.

The results with AZD2281 show that the mouse model is not only useful for the investigation of the efficacy and toxicity of chemical compounds. Also the development, prevention and circumvention of drug resistance can be tested in the model.

Hence, intervention studies in the mouse model may help to predict the basis of resistance to novel therapeutics well in advance of the human experience. Ultimately, this may improve the clinical success rate for novel anticancer drugs.

Frederique Melman | alfa
Further information:
http://www.nki.nl

More articles from Life Sciences:

nachricht Scientists call for improved technologies to save imperiled California salmon
14.12.2017 | NOAA Fisheries West Coast Region

nachricht Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients
14.12.2017 | Luxembourg Institute of Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>