Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor induction from a distance

06.06.2017

Researchers suggest that neighboring tissues can send signals inducing tumorigenesis

Current view is that cancer development is initiated from cells that acquire initial DNA mutations. These in turn provoke additional defects, and ultimately the affected cells begin to proliferate in an uncontrolled manner to develop primary tumors.


Graphics: Ralf Baumeister

These can later spread and create metastases, or secondary tumors, in other parts of the body. However, according to a study by researchers at the University of Freiburg, stem cells resulting in metastasizing tumors may also be induced from neighboring tissues, and do not necessarily require initial DNA damage in the affected cells themselves.

Originally, the researchers were simply interested in studying the role of FOXO, a well-known transcription factor that functions as a genetic switch. It has been known for quite a while that the activation of FOXO enhances cellular stress resistance in many organisms. FOXO activity in the roundworm C. elegans actually doubles the animal's lifespan. FOXO has also been shown to have tumor-suppressive properties.

However, since in different varieties of leukemia FOXO may also have an opposite role, acting as an oncogene, a research group led by Dr. Wenjing Qi and Prof. Dr. Ralf Baumeister, two molecular geneticists from the University of Freiburg, decided to take a closer look at these contradicting results. For this purpose, they investigated the role of FOXO in cancer development using C. elegans, a tiny 1 millimeter long lab organism that is exceptionally suited to manipulate and analyze genetic functions.

The team of researchers discovered that activation of FOXO suffices to develop tumors in stem cells – omnipotent, immortal cells that have the capability of unlimited proliferation. When investigating the signals inducing this cancer, the scientists discovered that it could not be found in the tumor cells themselves, but came from the surrounding tissues – in this case, primarily from the epidermis. The researchers now hypothesize that erroneous signals from a neighboring tissue are being sent to the stem cells, which then develop into a tumor. The source of this signal not only involves several already known oncogenes, but several newly discovered genes.

"With C. elegans, we were able to determine exactly which of the 20,000 genes in its genome are responsible for this tumor," Qi explained. "We've already found more than 10 candidates and we're still not done searching." The team has now published part of their findings in the scientific journal PLoS Genetics. The publication is the result of a project in the Collaborative Research Center (SFB 850) called Control of Cell Motility in Morphogenesis, Cancer Invasion and Metastasis at the University of Freiburg.

"Stem cells lie dormant in many organs. They are a reservoir not only for the immune system, but also to replace damaged cells in the body. They also eventually develop the cells of the embryo," explained Baumeister, who headed the study. "We believe that a misguided signal from otherwise inconspicuous tissues – in this case, the skin – is sufficient to imbalance the regulation stem cell maintenance. The affected stem cells don't need a mutation themselves to develop a tumor. Instead, they suddenly behave like an out of control firework that shoots sparks into a crowd of people instead of the sky."

The researchers now want to decipher and understand the nature of these crosstalk signals. "All of the genes that we've determined so far are also found in humans, and our current findings suggest that tumorigenesis may similarly be induced in humans," said Baumeister. The researchers hypothesize that their results may suggest that metastases can develop without previous occurrence of a primary tumor in another body part. In fact, in roughly one third of all occurring metastasizing tumors, a primary tumor lesion is never found.

Ralf Baumeister is a professor of Bioinformatics and Molecular Genetics at the Faculty of Biology and a member of the Cluster of Excellence BIOSS Centre for Biological Signalling Studies at the University of Freiburg.

Original Publication:
Qi, W., Yan, Y, Pfeifer, D., Donner v. Gromoff, E., Wang, Y, Maier, W. and Baumeister, R. (2017) C. elegans DAF-16/FOXO interacts with TGF-ß/BMP signaling to induce germline tumor formation via mTORC1 activation. PLoS Genet 13(5): e1006801. https: //doi. org/10. 1371/journal. pgen. 1006801 (open access).

Contact:
Prof. Dr. Ralf Baumeister, Bioinformatics and Molecular Genetics, Center of Biochemistry and Molecular Cell Research (ZBMZ)
Dr. Wenjing Qi, Bioinformatics and Molecular Genetics
University of Freiburg
Phone: +49 (0)761 / 203 – 8350 (Angelika Reichinger, Secretary's Office, Monday through Friday 9 a.m. to 1 p.m.)
E-Mail: baumeister@celegans.de, wenjing.qi@biologie.uni-freiburg.de, angelika.reichinger@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/2017/tumor-induction-from-a-distance

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Further reports about: Bioinformatics Tumor cancer development elegans primary tumor stem cells

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>