Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor-attacking virus strikes with 'one-two punch'

02.12.2009
Ohio State University cancer researchers have developed a tumor-attacking virus that both kills brain-tumor cells and blocks the growth of new tumor blood vessels.

Their research shows that viruses designed to kill cancer cells – oncolytic viruses – might be more effective against aggressive brain tumors if they also carry a gene for a protein that inhibits blood-vessel growth.

The protein, called vasculostatin, is normally produced in the brain. In this study, an oncolytic virus containing the gene for this protein in some cases eliminated human glioblastoma tumors growing in animals and significantly slowed tumor recurrence in others. Glioblastomas, which characteristically have a high number of blood vessels, are the most common and devastating form of human brain cancer. People diagnosed with these tumors survive less than 15 months on average after diagnosis.

"This is the first study to report the effects of vasculostatin delivery into established tumors, and it supports further development of this novel virus as a possible cancer treatment," says study leader Balveen Kaur, associate professor of neurological surgery and a researcher with the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. "Our findings suggest that this oncolytic virus is a safe and promising strategy to pursue for the treatment of human brain tumors.

"This study shows the potential of combining an oncolytic virus with a natural blood-vessel growth inhibitor such as vasculostatin. Future studies will reveal the potential for safety and efficacy when used in combination with chemotherapy and radiation therapy," she says.

The findings were recently published online in the journal Molecular Therapy.

Jayson Hardcastle, a graduate student in Dr. Kaur's laboratory, injected the cancer-killing virus, called RAMBO (for Rapid Antiangiogenesis Mediated By Oncolytic virus), directly into human glioblastoma tumors growing either under the skin or in the brains of mice.

Of six animals with tumors under the skin, those treated with RAMBO survived an average of 54 days. In addition, three of the RAMBO mice were tumor-free at the end of the experiment. Control animals treated with a similar virus that lacked the vasculostatin gene, on the other hand, survived an average of 26 days and none were tumor-free.

Of the animals with a human glioblastoma in the brain, five were treated with RAMBO and lived an average of 54 days. One animal remained tumor-free for more than 120 days. Control animals, by comparison, lived an average of 26 days with no long-term survivors.

In another experiment, the investigators followed the course of tumor changes in animals with tumors in the brain. After an initial period of tumor shrinkage, the remaining cancer cells began regrowing around day 13 in animals given the virus that lacked the blood-vessel inhibitor. In animals treated with RAMBO, tumor regrowth didn't begin until about day 39.

"With additional research, this virus could lead to a new therapeutic strategy for combating cancer," Kaur says.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>