Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor-attacking virus strikes with 'one-two punch'

02.12.2009
Ohio State University cancer researchers have developed a tumor-attacking virus that both kills brain-tumor cells and blocks the growth of new tumor blood vessels.

Their research shows that viruses designed to kill cancer cells – oncolytic viruses – might be more effective against aggressive brain tumors if they also carry a gene for a protein that inhibits blood-vessel growth.

The protein, called vasculostatin, is normally produced in the brain. In this study, an oncolytic virus containing the gene for this protein in some cases eliminated human glioblastoma tumors growing in animals and significantly slowed tumor recurrence in others. Glioblastomas, which characteristically have a high number of blood vessels, are the most common and devastating form of human brain cancer. People diagnosed with these tumors survive less than 15 months on average after diagnosis.

"This is the first study to report the effects of vasculostatin delivery into established tumors, and it supports further development of this novel virus as a possible cancer treatment," says study leader Balveen Kaur, associate professor of neurological surgery and a researcher with the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. "Our findings suggest that this oncolytic virus is a safe and promising strategy to pursue for the treatment of human brain tumors.

"This study shows the potential of combining an oncolytic virus with a natural blood-vessel growth inhibitor such as vasculostatin. Future studies will reveal the potential for safety and efficacy when used in combination with chemotherapy and radiation therapy," she says.

The findings were recently published online in the journal Molecular Therapy.

Jayson Hardcastle, a graduate student in Dr. Kaur's laboratory, injected the cancer-killing virus, called RAMBO (for Rapid Antiangiogenesis Mediated By Oncolytic virus), directly into human glioblastoma tumors growing either under the skin or in the brains of mice.

Of six animals with tumors under the skin, those treated with RAMBO survived an average of 54 days. In addition, three of the RAMBO mice were tumor-free at the end of the experiment. Control animals treated with a similar virus that lacked the vasculostatin gene, on the other hand, survived an average of 26 days and none were tumor-free.

Of the animals with a human glioblastoma in the brain, five were treated with RAMBO and lived an average of 54 days. One animal remained tumor-free for more than 120 days. Control animals, by comparison, lived an average of 26 days with no long-term survivors.

In another experiment, the investigators followed the course of tumor changes in animals with tumors in the brain. After an initial period of tumor shrinkage, the remaining cancer cells began regrowing around day 13 in animals given the virus that lacked the blood-vessel inhibitor. In animals treated with RAMBO, tumor regrowth didn't begin until about day 39.

"With additional research, this virus could lead to a new therapeutic strategy for combating cancer," Kaur says.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>