Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tugging of extracellular matrix creates “come hither” stimulus for cancer migration

23.03.2011
Ninety percent of cancer deaths resulted from metastasis, the spread of cancer to different areas in the body, yet scientific exploration of the possible mechanical factors that promote metastasis has been limited. A Wayne State University researcher, however, is expanding the scientific understanding of what makes malignant tumors spread, and the answer lies within the dense, fibrous matrix that surrounds cancer cells.

Karen A. Beningo, Ph.D., assistant professor of biology in WSU's College of Liberal Arts and Sciences and resident of Plymouth, Mich., has found that the continuous restructuring of the extracellular matrix that upholds the weight of a tumor is one of the reasons highly invasive, malignant tumors are mechanically able to spread to other parts of the body. Beningo's study was recently published in PLoS ONE.

"This study has identified a novel physical parameter and a new conceptual framework in which to assess the process of invasion, not just of cancer cells but other invasive cell types as well," said Beningo.

Beningo simulated the tugging and pulling forces by embedding magnetic microbeads in the collagen matrix of a three-dimensional, cell-based assay. This way, she was able to examine the physical mechanisms "without the complication of secreted biochemical factors," she said.

"Surprisingly, we found that cancer cells were two to four times more likely to invade if the matrix was magnetically stimulated than if the culture was not stimulated," said Beningo.

She also found that less invasive tumors were not as stimulated by the tugging and pulling forces of the extracellular matrix as highly invasive tumors. Moreover, the absence of fibronectin, a component of the extracellular matrix, and cofilin, a cellular protein, removed the tumor's sensitivity to the mechanical "come hither" stimulus.

"We can conclusively state that fibronectin and cofilin are required for this mechanical response," said Beningo.

Beningo is working toward defining the mechanism of mechanically enhanced invasion and hopes to identify therapeutic targets.

"If we can prevent the invasive movement of cancer cells from the primary tumor, a large battle in the war on cancer will have been won," she said.

Financial support for the study was provided by Wayne State University.

Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information about research at Wayne State University, visit http://www.research.wayne.edu.

Julie O'Connor | EurekAlert!
Further information:
http://www.research.wayne.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>