Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tugging of extracellular matrix creates “come hither” stimulus for cancer migration

Ninety percent of cancer deaths resulted from metastasis, the spread of cancer to different areas in the body, yet scientific exploration of the possible mechanical factors that promote metastasis has been limited. A Wayne State University researcher, however, is expanding the scientific understanding of what makes malignant tumors spread, and the answer lies within the dense, fibrous matrix that surrounds cancer cells.

Karen A. Beningo, Ph.D., assistant professor of biology in WSU's College of Liberal Arts and Sciences and resident of Plymouth, Mich., has found that the continuous restructuring of the extracellular matrix that upholds the weight of a tumor is one of the reasons highly invasive, malignant tumors are mechanically able to spread to other parts of the body. Beningo's study was recently published in PLoS ONE.

"This study has identified a novel physical parameter and a new conceptual framework in which to assess the process of invasion, not just of cancer cells but other invasive cell types as well," said Beningo.

Beningo simulated the tugging and pulling forces by embedding magnetic microbeads in the collagen matrix of a three-dimensional, cell-based assay. This way, she was able to examine the physical mechanisms "without the complication of secreted biochemical factors," she said.

"Surprisingly, we found that cancer cells were two to four times more likely to invade if the matrix was magnetically stimulated than if the culture was not stimulated," said Beningo.

She also found that less invasive tumors were not as stimulated by the tugging and pulling forces of the extracellular matrix as highly invasive tumors. Moreover, the absence of fibronectin, a component of the extracellular matrix, and cofilin, a cellular protein, removed the tumor's sensitivity to the mechanical "come hither" stimulus.

"We can conclusively state that fibronectin and cofilin are required for this mechanical response," said Beningo.

Beningo is working toward defining the mechanism of mechanically enhanced invasion and hopes to identify therapeutic targets.

"If we can prevent the invasive movement of cancer cells from the primary tumor, a large battle in the war on cancer will have been won," she said.

Financial support for the study was provided by Wayne State University.

Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information about research at Wayne State University, visit

Julie O'Connor | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>