Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tubules "grown" from droplets

18.06.2009
Bismuth-catalyzed growth of tin disulfide nanotubes

Since the discovery of carbon nanotubes in the early 1990s, nanotubes and nanowires have been the focus of scientific and technological interest. It has since also proved possible to produce these tiny structures from materials other than carbon.

Possible applications range across many areas, including microelectronic circuits, sensor technology, and special fibre optics and light-emitting nanotubes for displays. A team of researchers led by Wolfgang Tremel at Johannes Gutenberg University Mainz have now developed a new technique for producing tin disulfide nanotubes. According to the report published in the journal Angewandte Chemie, the scientists have found a way of 'growing' SnS2 tubules from a metal droplet.

It is not a new concept that metal sulfides with a lamellar structure will form nano-tubes. These are currently employed in medical devices, as fibres with extremely high tensile strength, in hydrogen storage, for rechargeable batteries, in catalysis, and in nanotechnological applications. However, a major problem associated with the synthesis of sulfide-based nanotubes is that high temperatures are required for the planar structures to be induced to bend to form cylinders. In addition, these unstable intermediate products must be trapped. This is nearly impossible in the case of tin disulfide, as the nanotube collapses already at significantly lower temperatures.

The team of researchers at Mainz University therefore implemented an alternative method for the production of tin disulfide nanotubes: They first used the vapour-liquid-solid (VLS) process, a technique more commonly used to produce semicon-ductor nanowires. Bismuth powder is combined with tin disulfide nanoflakes, and the mixture is heated in a tube furnace under an argon gas flow. The product of the reaction is deposited at the cooler end.

Nanodroplets of bismuth are formed in the furnace, and these act as local collec-tion points for tin. In this manner, the reaction partners accumulate in the metal droplets, providing the raw material from which nanotubes can be grown. Tremel explains: "In this process, the metal droplets are retained in the form of spheres at the end of the tubes, while the nanotubes grow out of them like hairs from follicles. And thanks to the catalytic effect provided by the metal droplets, it is possible to grow nanotubes even at relatively low temperatures."

Using the new technique, the team has been able to produce perfect nanotubes with diameters in a range of 30 - 40 nm and lengths of 100 - 500 nm consisting of several layers of SnS2.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/13160.php

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>