Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

True colors: Female squid have 2 ways to switch color, according to a UCSB study

19.09.2013
The female common market squid –– AKA Doryteuthis opalescens –– may not be so common after all. Researchers at UC Santa Barbara have discovered that this glamorous cephalopod possesses a pair of stripes that can sparkle with rainbow iridescence. These flank a single stripe, which can go from complete transparency to bright white.

This marks the first time that switchable white cells based on reflectins –– the proteins responsible for reflecting light as color –– have been observed. The findings are published in the Journal of Experimental Biology.


This photo shows female-specific iridescent stripes in the skin of the common market squid (Doryteuthis opalescens). Credit: Daniel DeMartini

The current research builds on the scientists' previous work that revealed the mechanism responsible for the dramatic changes in color used by such creatures as squids and octopuses. "Whether colored or white, these cells become switchable when activated by the neurotransmitter acetylcholine," explained study co-author Daniel Morse, professor of molecular genetics and biochemistry in the Department of Molecular, Cellular, and Developmental Biology.

"The facts that the switchable white cells contain some of the same reflectins, that they're triggered by the same neurotransmitter, and that this drives a change in the membrane assemblies containing the reflectins all suggest that they operate by a molecular mechanism fundamentally related to that controlling the switchable color," he added.

The switchable color and white cells have two different systems for reflecting light, because when activated, the reflectins produce two distinct biological nanostructures. The internal arrangement of the reflectins in switchable color cells, called iridocytes, creates an accordion-like structure or, in scientific terms, alternating lamellae. Switchable white cells, called leucophores, also contain reflectins, but in a thousand or more small membrane-enclosed spherical vesicles of varying sizes and shapes. When the reflectins in both iridocytes and leucophores are induced to condense, the refractive index increases, causing light to be reflected in two distinct ways: Bragg reflection and Mie scattering.

Named after the father and son who discovered how periodic structures reflect light in a very regular and predicable manner, Bragg reflection is similar to the light from the sheen of oil on water, where multiple colors appear, depending on the thickness of the layers of oil on the water. The intensely reflective iridocytes of these iridescent stripes provide brighter color from a greater signal-to-noise ratio than adaptive iridocytes previously studied.

Mie scattering, based on the theory of German physicist Gustav Mie, disperses light so that all colors are seen at once, resulting in white. "Because of their periodic array, the lamellae reflect a unique, specific wavelength or color of light so when the thickness and the spacing changes, the color becomes specifically tunable," said Morse. "But Mie reflection scatters all wavelengths of light, producing white, so it is not tunable or selectable. Instead, these cells switch from clear to white."

In the cells that make up the squid's switchable white stripe, the vesicles change from completely transparent to optically dense, scattering light to reflect white when they shrink as a result of the condensation of the reflectins and the resulting expulsion of water and dehydration. This is the same mechanism of reflection seen in white paint, which consists of small nanoparticles of mineral with a range of small sizes that collectively reflect all colors so they appear white.

This central white stripe on the female squid occurs on the dorsal surface of the mantel between the fins, in the same location as the conspicuously bright white testis in the male. "Our best supposition is that the female can masquerade as a male to discourage multiple matings," said Daniel DeMartini, the doctoral student and co-author who discovered this feature. "The white stripe is turned on so it looks like the female has a testis. She may do this to protect the survival of her fertilized eggs, but that is just a suggestion."

"The ideal number of matings might be more than one but less than many," added Morse. "In other words, it might be best to have a few matings so that the female's eggs are fertilized by a few fathers to increase genetic diversity, making the offspring better able to survive under a range of environmental conditions like the rising temperature in the ocean, for example. The female wouldn't want to look like a male from the beginning because that would discourage all mating."

According to Morse, this new discovery of the switchable white cells and the fact that the underlying molecular mechanism is fundamentally the same as that driving the switchable or tunable color is further proof that transparent polymers –– in this case the polymers are proteins –– can be used to produce nanostructures that control the behavior of light.

"What we're looking for is ways in which the novel solutions that have evolved in biological systems might be harnessed to develop new routes to advanced materials with optical and electronic applications that differ from the conventional routes of present-day engineering," Morse concluded. "So the focus of our work is directed toward new applications that translate the mechanism from the world of proteins and living cells to the world of practical engineering with synthetic polymers."

This research was supported by the Army Research Office and the Office of Naval Research. Electron microscopy made use of instrumentation and facilities provided by UCSB's Materials Research Laboratory, which is supported by the National Science Foundation.

Julie Cohen | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>